cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A113869 Coefficients in asymptotic expansion of probability that a random pair of elements from the alternating group A_k generates all of A_k.

Original entry on oeis.org

1, -1, -1, -4, -23, -171, -1542, -16241, -194973, -2622610, -39027573, -636225591, -11272598680, -215668335091, -4431191311809, -97316894892644, -2275184746472827, -56421527472282127, -1479397224086870294, -40897073524132164189, -1188896226524012279617
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2006

Keywords

Crossrefs

Programs

Formula

The probability that a random pair of elements from the alternating group A_k generates all of A_k is P_k ~ 1-1/k-1/k^2-4/k^3-23/k^4-171/k^5-... = Sum_{n >= 0} a(n)/k^n.
Furthermore, P_k ~ 1 - Sum_{n >= 1} A003319(n)/[k]n, where [k]_n = k(k-1)(k-2)...(k-n+1). Therefore for n >= 2, a(n) = - Sum{i=1..n} A003319(i)*Stirling_2(n-1, i-1). - N. J. A. Sloane.
a(n) ~ -n! / (4 * (log(2))^(n+1)). - Vaclav Kotesovec, Jul 28 2015

A168246 Inverse Weigh transform of n!.

Original entry on oeis.org

1, 2, 4, 19, 92, 576, 4156, 34178, 314368, 3199936, 35703996, 433422071, 5687955724, 80256879068, 1211781887796, 19496946568898, 333041104402860, 6019770247224496, 114794574818830716, 2303332661419442569, 48509766592884311132, 1069983257387168051076
Offset: 1

Views

Author

Vladeta Jovovic, Nov 21 2009

Keywords

Crossrefs

Cf. A000142, A112354, A261052 (Weigh transform of n!).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; n! -b(n, n-1) end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Jun 11 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    a[n_] := a[n] = n! - b[n, n - 1];
    Array[a, 30] (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz *)
  • PARI
    seq(n)={dirdiv(Vec(log(1+x*Ser(vector(n, n, n!)))), -vector(n, n, (-1)^n/n))} \\ Andrew Howroyd, Jun 22 2018

Formula

Product_{k>=1} (1+x^k)^a(k) = Sum_{n>=0} n! x^n.
a(n) ~ n! * (1 - 1/n - 1/n^2 - 4/n^3 - 23/n^4 - 171/n^5 - 1542/n^6 - 16241/n^7 - 194973/n^8 - 2622610/n^9 - 39027573/n^10 - ...), for coefficients see A113869. - Vaclav Kotesovec, Nov 27 2020

A305868 Product_{n>=1} 1/(1 - x^n)^a(n) = g.f. of A001147 (double factorial of odd numbers).

Original entry on oeis.org

1, 2, 12, 87, 816, 9194, 122028, 1859460, 32002076, 613890984, 12989299596, 300556859080, 7550646317520, 204687481289946, 5955892982437120, 185158929516065160, 6125200081143892800, 214837724609502834082, 7963817560398871790604, 311101285877489780292000, 12773912991134665452205048
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 12 2018

Keywords

Comments

Inverse Euler transform of A001147.

Examples

			1/((1 - x) * (1 - x^2)^2 * (1 - x^3)^12 * (1 - x^4)^87 * (1 - x^5)^816 * ... * (1 - x^n)^a(n) * ...) = 1 + 1*x + 1*3*x^2 + 1*3*5*x^3 + 1*3*5*7*x^4 + ... + A001147(k)*x^k + ...
		

Crossrefs

Programs

  • Mathematica
    nn = 21; f[x_] := Product[1/(1 - x^n)^a[n], {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1/(1 + ContinuedFractionK[-k x, 1, {k, 1, nn}]), {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
    nmax = 20; s = ConstantArray[0, nmax]; Do[s[[j]] = j*(2*j - 1)!! - Sum[s[[d]]*(2*j - 2*d - 1)!!, {d, 1, j - 1}], {j, 1, nmax}]; Table[Sum[MoebiusMu[k/d]*s[[d]], {d, Divisors[k]}]/k, {k, 1, nmax}] (* Vaclav Kotesovec, Aug 09 2019 *)

Formula

Product_{n>=1} 1/(1 - x^n)^a(n) = 1/(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - ...)))))).
a(n) ~ 2^(n + 1/2) * n^n / exp(n). - Vaclav Kotesovec, Aug 09 2019

A305754 Inverse Euler transform of n^n.

Original entry on oeis.org

1, 3, 23, 223, 2800, 42576, 763220, 15734388, 366715248, 9533817400, 273549419552, 8586984241870, 292755986184548, 10772849583399474, 425587711650564816, 17966217346985801150, 807152054953801845760, 38451365602113352159320, 1936082850634342992601636
Offset: 1

Views

Author

Seiichi Manyama, Jun 10 2018

Keywords

Examples

			(1-x)^(-1) * (1-x^2)^(-3) * (1-x^3)^(-23) * (1-x^4)^(-223) * ... = 1 + x + 4*x^2 + 27*x^3 + 256*x^4 + ... .
		

Crossrefs

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(n -> n^n):
    seq(a(n), n = 1..19); # Peter Luschny, Nov 21 2022
  • Mathematica
    n = 20; s = {};
    For[i = 1, i <= n, i++, AppendTo[s, i*i^i - Sum[s[[d]]*(i-d)^(i-d), {d, i - 1}]]];
    Table[Sum[If[Divisible[i, d], MoebiusMu[i/d], 0]*s[[d]], {d, 1, i}]/i, {i, n}] (* Jean-François Alcover, May 10 2019 *)

Formula

Product_{k>=1} 1/(1-x^k)^{a(k)} = Sum_{n>=0} (n * x)^n.
a(n) ~ n^n. - Vaclav Kotesovec, Oct 09 2019

A305786 Inverse Euler transform of (-1)^n * n!.

Original entry on oeis.org

-1, 2, -4, 17, -92, 576, -4156, 34159, -314368, 3199936, -35703996, 433421495, -5687955724, 80256879068, -1211781887796, 19496946534720, -333041104402860, 6019770247224496, -114794574818830716, 2303332661416242633, -48509766592884311132, 1069983257387168051076
Offset: 1

Views

Author

Seiichi Manyama, Jun 10 2018

Keywords

Examples

			(1-x) * (1-x^2)^(-2) * (1-x^3)^4 * (1-x^4)^(-17) * ... = 1 - x + 2*x^2 - 6*x^3 + 24*x^4 - ... .
		

Crossrefs

Formula

Product_{k>=1} 1/(1-x^k)^{a(k)} = Sum_{n>=0} (-1)^n * n! * x^n.
a(n) ~ (-1)^n * n!. - Vaclav Kotesovec, Oct 09 2019

A380498 Inverse Euler transform of primorial numbers.

Original entry on oeis.org

2, 3, 20, 150, 1860, 24950, 444060, 8583780, 202071920, 5992771854, 186947632200, 7001535703840, 288868991951760, 12455290280427090, 587972068547997856, 31327583556941402160, 1856116108295418943020, 113366872636395265380920, 7619343577986975410930880, 541957669076266398658079700
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 25 2025

Keywords

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; `if`(n<1, 1, p(n-1)*ithprime(n)) end:
    ietr:= proc(p) uses numtheory; (c-> proc(n) option remember;
             `if`(n=0, 1, add(mobius(n/d)*c(d), d=divisors(n))/n) end)(
              proc(n) option remember; n*p(n)-add(thisproc(j)*p(n-j), j=1..n-1) end)
           end:
    a:= ietr(p):
    seq(a(n), n=1..20);  # Alois P. Heinz, Jan 25 2025
  • Mathematica
    primorial[n_] := Product[Prime[j], {j, 1, n}]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i] + j - 1, j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := primorial[n] - b[n, n - 1]; a /@ Range[20]

Formula

Product_{n>=1} 1 / (1 - x^n)^a(n) = Sum_{n>=0} prime(n)# * x^n.
Showing 1-6 of 6 results.