cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A113869 Coefficients in asymptotic expansion of probability that a random pair of elements from the alternating group A_k generates all of A_k.

Original entry on oeis.org

1, -1, -1, -4, -23, -171, -1542, -16241, -194973, -2622610, -39027573, -636225591, -11272598680, -215668335091, -4431191311809, -97316894892644, -2275184746472827, -56421527472282127, -1479397224086870294, -40897073524132164189, -1188896226524012279617
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2006

Keywords

Crossrefs

Programs

Formula

The probability that a random pair of elements from the alternating group A_k generates all of A_k is P_k ~ 1-1/k-1/k^2-4/k^3-23/k^4-171/k^5-... = Sum_{n >= 0} a(n)/k^n.
Furthermore, P_k ~ 1 - Sum_{n >= 1} A003319(n)/[k]n, where [k]_n = k(k-1)(k-2)...(k-n+1). Therefore for n >= 2, a(n) = - Sum{i=1..n} A003319(i)*Stirling_2(n-1, i-1). - N. J. A. Sloane.
a(n) ~ -n! / (4 * (log(2))^(n+1)). - Vaclav Kotesovec, Jul 28 2015

A261052 Expansion of Product_{k>=1} (1+x^k)^(k!).

Original entry on oeis.org

1, 1, 2, 8, 31, 157, 915, 6213, 48240, 423398, 4147775, 44882107, 531564195, 6837784087, 94909482330, 1413561537884, 22482554909451, 380269771734265, 6815003300096013, 128992737080703803, 2571218642722865352, 53835084737513866662, 1181222084520177393143
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 08 2015

Keywords

Comments

Weigh transform of the factorial numbers. - Alois P. Heinz, Jun 11 2018

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(i!, j)*b(n-i*j,i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    nmax=25; CoefficientList[Series[Product[(1+x^k)^(k!),{k,1,nmax}],{x,0,nmax}],x]
  • PARI
    seq(n)={Vec(exp(x*Ser(dirmul(vector(n, n, n!), -vector(n, n, (-1)^n/n)))))} \\ Andrew Howroyd, Jun 22 2018

Formula

a(n) ~ n! * (1 + 1/n + 2/n^2 + 10/n^3 + 57/n^4 + 401/n^5 + 3382/n^6 + 33183/n^7 + 371600/n^8 + 4685547/n^9 + 65792453/n^10).

A305846 Inverse Weigh transform of the Bell numbers (A000110).

Original entry on oeis.org

1, 2, 3, 11, 34, 138, 610, 2976, 15612, 87905, 526274, 3334988, 22270254, 156173299, 1146640394, 8791427525, 70227355786, 583283756678, 5027823752930, 44903579714037, 414877600876638, 3959945233249877, 38996757506464858, 395749369601741015, 4134132167178705732
Offset: 1

Views

Author

Alois P. Heinz, Jun 11 2018

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*g(n-j), j=1..n))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; g(n)-b(n, n-1) end:
    seq(a(n), n=1..30);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1,
         Sum[Binomial[n-1, j-1]*g[n-j], {j, 1, n}]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
         Sum[Binomial[a[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    a[n_] := a[n] = g[n] - b[n, n - 1];
    Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 10 2022, after Alois P. Heinz *)

Formula

Product_{k>=1} (1+x^k)^a(k) = Sum_{n>=0} Bell(n) * x^n.

A305870 Product_{n>=1} (1 + x^n)^a(n) = g.f. of A001147 (double factorial of odd numbers).

Original entry on oeis.org

1, 3, 12, 90, 816, 9206, 122028, 1859550, 32002076, 613891800, 12989299596, 300556868286, 7550646317520, 204687481411974, 5955892982437120, 185158929517924710, 6125200081143892800, 214837724609534836158, 7963817560398871790604, 311101285877490394183800, 12773912991134665452205048
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 12 2018

Keywords

Comments

Inverse weigh transform of A001147.

Examples

			(1 + x) * (1 + x^2)^3 * (1 + x^3)^12 * (1 + x^4)^90 * (1 + x^5)^816 * ... * (1 + x^n)^a(n) * ... = 1 + 1*x + 1*3*x^2 + 1*3*5*x^3 + 1*3*5*7*x^4 + ... + A001147(k)*x^k + ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; doublefactorial(2*n-1)-b(n, n-1) end:
    seq(a(n), n=1..23);  # Alois P. Heinz, Jun 13 2018
  • Mathematica
    nn = 21; f[x_] := Product[(1 + x^n)^a[n], {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1/(1 + ContinuedFractionK[-k x, 1, {k, 1, nn}]), {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

Formula

Product_{n>=1} (1 + x^n)^a(n) = 1/(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - ...)))))).

A306153 Inverse Weigh transform of (-1)^n * n!.

Original entry on oeis.org

-1, 1, -4, 18, -92, 572, -4156, 34177, -314368, 3199844, -35703996, 433422067, -5687955724, 80256874912, -1211781887796, 19496946568897, -333041104402860, 6019770246910128, -114794574818830716, 2303332661419442477, -48509766592884311132, 1069983257387132347080
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2018

Keywords

Examples

			(1+x)^(-1)*(1+x^2)*(1+x^3)^(-4)*(1+x^4)^18* ... = 1 - x + 2*x^2 - 6*x^3 + 24*x^4 - ... .
		

Crossrefs

Cf. A168246.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> (-1)^n*n!-b(n, n-1):
    seq(a(n), n=1..24);  # Alois P. Heinz, Jun 23 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j] b[n - i j, i - 1], {j, 0, n/i}]]];
    a[n_] := (-1)^n n! - b[n, n - 1] // FullSimplify;
    Array[a, 24] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)

Formula

a(n) ~ (-1)^n * n! * (1 - 1/n - 1/n^2 - 4/n^3 - 23/n^4 - 171/n^5 - 1542/n^6 - 16241/n^7 - 194973/n^8 - 2622610/n^9 - 39027573/n^10 - ...), for coefficients see A113869. - Vaclav Kotesovec, Nov 27 2020

A380614 Product_{n>=1} (1 + x^n)^a(n) = Sum_{n>=0} prime(n)# * x^n.

Original entry on oeis.org

2, 5, 20, 155, 1860, 24970, 444060, 8583935, 202071920, 5992773714, 186947632200, 7001535728810, 288868991951760, 12455290280871150, 587972068547997856, 31327583556949986095, 1856116108295418943020, 113366872636395467452840, 7619343577986975410930880, 541957669076266404650853414
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 28 2025

Keywords

Comments

Inverse Weigh transform of primorial numbers.

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; `if`(n<1, 1, p(n-1)*ithprime(n)) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; p(n)-b(n, n-1) end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Jan 28 2025
  • Mathematica
    primorial[n_] := Product[Prime[j], {j, 1, n}]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := a[n] = primorial[n] - b[n, n - 1]; Array[a, 20]
Showing 1-6 of 6 results.