cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A168246 Inverse Weigh transform of n!.

Original entry on oeis.org

1, 2, 4, 19, 92, 576, 4156, 34178, 314368, 3199936, 35703996, 433422071, 5687955724, 80256879068, 1211781887796, 19496946568898, 333041104402860, 6019770247224496, 114794574818830716, 2303332661419442569, 48509766592884311132, 1069983257387168051076
Offset: 1

Views

Author

Vladeta Jovovic, Nov 21 2009

Keywords

Crossrefs

Cf. A000142, A112354, A261052 (Weigh transform of n!).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; n! -b(n, n-1) end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Jun 11 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    a[n_] := a[n] = n! - b[n, n - 1];
    Array[a, 30] (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz *)
  • PARI
    seq(n)={dirdiv(Vec(log(1+x*Ser(vector(n, n, n!)))), -vector(n, n, (-1)^n/n))} \\ Andrew Howroyd, Jun 22 2018

Formula

Product_{k>=1} (1+x^k)^a(k) = Sum_{n>=0} n! x^n.
a(n) ~ n! * (1 - 1/n - 1/n^2 - 4/n^3 - 23/n^4 - 171/n^5 - 1542/n^6 - 16241/n^7 - 194973/n^8 - 2622610/n^9 - 39027573/n^10 - ...), for coefficients see A113869. - Vaclav Kotesovec, Nov 27 2020

A261053 Expansion of Product_{k>=1} (1+x^k)^(k^k).

Original entry on oeis.org

1, 1, 4, 31, 289, 3495, 51268, 891152, 17926913, 409907600, 10499834497, 297793199060, 9262502810645, 313457634240463, 11464902463397642, 450646709610954343, 18943070964019019671, 847932498252050293971, 40266255926484893366914, 2021845081107882645459639
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 08 2015

Keywords

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1+x^k)^(k^k): k in [1..(m+2)]]))); // G. C. Greubel, Nov 08 2018
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(i^i, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    nmax=20; CoefficientList[Series[Product[(1+x^k)^(k^k),{k,1,nmax}],{x,0,nmax}],x]
  • PARI
    m=20; x='x+O('x^m); Vec(prod(k=1,m, (1+x^k)^(k^k))) \\ G. C. Greubel, Nov 08 2018
    

Formula

a(n) ~ n^n * (1 + exp(-1)/n + (exp(-1)/2 + 4*exp(-2))/n^2).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d^(d+1) ) * x^k/k). - Ilya Gutkovskiy, Nov 08 2018

A305869 Expansion of Product_{k>=1} (1 + x^k)^(2*k-1)!!.

Original entry on oeis.org

1, 1, 3, 18, 123, 1098, 11806, 150406, 2218065, 37206485, 699604235, 14572941915, 333037896380, 8283300923765, 222714069807495, 6436292165450693, 198941178161054798, 6548632634238445779, 228705772883364303114, 8446082393596031365629, 328846269698068735291665, 13462627492562640070346824
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 12 2018

Keywords

Comments

Weigh transform of A001147.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(doublefactorial(2*i-1), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jun 13 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[(1 + x^k)^(2 k - 1)!!, {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (2 d - 1)!!, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 21}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A001147(k).

A321522 Expansion of Product_{k>=1} (1 + x^k)^((k-1)!).

Original entry on oeis.org

1, 1, 1, 3, 8, 32, 153, 883, 5980, 46660, 411861, 4057263, 44104688, 524243696, 6762188285, 94055795999, 1403061499362, 22342571084082, 378257158227079, 6783952072695685, 128481050502464062, 2562250926987454694, 53668572808754641369, 1177957644341460946099
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*binomial((i-1)!, j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 10 2021
  • Mathematica
    nmax = 23; CoefficientList[Series[Product[(1 + x^k)^((k - 1)!), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d!, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 23}]

Formula

G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d! ) * x^k/k).
a(n) ~ (n-1)! * (1 + 1/n + 2/n^2 + 7/n^3 + 34/n^4 + 203/n^5 + 1455/n^6 + 12343/n^7 + 121636/n^8 + 1368647/n^9 + 17343274/n^10 + ...). - Vaclav Kotesovec, Nov 13 2018

A380613 Expansion of Product_{k>=1} (1 + x^k)^prime(k)#.

Original entry on oeis.org

1, 2, 7, 42, 291, 2970, 36950, 597100, 11070875, 248103940, 7018494836, 215718595582, 7881561212732, 320881902092122, 13754717161317416, 643588827524430916, 33926485821837232397, 1992916854095359256932, 121393059052727838936847, 8107963745977267426512386, 574571379331620422000295082
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 28 2025

Keywords

Comments

Weigh transform of primorial numbers.

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; `if`(n<1, 1, p(n-1)*ithprime(n)) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(p(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jan 28 2025
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + x^k)^Product[Prime[j], {j, 1, k}], {k, 1, nmax}], {x, 0, nmax}], x]
    primorial[n_] := Product[Prime[j], {j, 1, n}]; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(j/d + 1) d primorial[d], {d, Divisors[j]}] a[n - j], {j, 1, n}]/n]; Table[a[n], {n, 0, 20}]
Showing 1-5 of 5 results.