cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A380614 Product_{n>=1} (1 + x^n)^a(n) = Sum_{n>=0} prime(n)# * x^n.

Original entry on oeis.org

2, 5, 20, 155, 1860, 24970, 444060, 8583935, 202071920, 5992773714, 186947632200, 7001535728810, 288868991951760, 12455290280871150, 587972068547997856, 31327583556949986095, 1856116108295418943020, 113366872636395467452840, 7619343577986975410930880, 541957669076266404650853414
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 28 2025

Keywords

Comments

Inverse Weigh transform of primorial numbers.

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; `if`(n<1, 1, p(n-1)*ithprime(n)) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; p(n)-b(n, n-1) end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Jan 28 2025
  • Mathematica
    primorial[n_] := Product[Prime[j], {j, 1, n}]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := a[n] = primorial[n] - b[n, n - 1]; Array[a, 20]
Showing 1-1 of 1 results.