cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A305868 Product_{n>=1} 1/(1 - x^n)^a(n) = g.f. of A001147 (double factorial of odd numbers).

Original entry on oeis.org

1, 2, 12, 87, 816, 9194, 122028, 1859460, 32002076, 613890984, 12989299596, 300556859080, 7550646317520, 204687481289946, 5955892982437120, 185158929516065160, 6125200081143892800, 214837724609502834082, 7963817560398871790604, 311101285877489780292000, 12773912991134665452205048
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 12 2018

Keywords

Comments

Inverse Euler transform of A001147.

Examples

			1/((1 - x) * (1 - x^2)^2 * (1 - x^3)^12 * (1 - x^4)^87 * (1 - x^5)^816 * ... * (1 - x^n)^a(n) * ...) = 1 + 1*x + 1*3*x^2 + 1*3*5*x^3 + 1*3*5*7*x^4 + ... + A001147(k)*x^k + ...
		

Crossrefs

Programs

  • Mathematica
    nn = 21; f[x_] := Product[1/(1 - x^n)^a[n], {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1/(1 + ContinuedFractionK[-k x, 1, {k, 1, nn}]), {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
    nmax = 20; s = ConstantArray[0, nmax]; Do[s[[j]] = j*(2*j - 1)!! - Sum[s[[d]]*(2*j - 2*d - 1)!!, {d, 1, j - 1}], {j, 1, nmax}]; Table[Sum[MoebiusMu[k/d]*s[[d]], {d, Divisors[k]}]/k, {k, 1, nmax}] (* Vaclav Kotesovec, Aug 09 2019 *)

Formula

Product_{n>=1} 1/(1 - x^n)^a(n) = 1/(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - ...)))))).
a(n) ~ 2^(n + 1/2) * n^n / exp(n). - Vaclav Kotesovec, Aug 09 2019

A305869 Expansion of Product_{k>=1} (1 + x^k)^(2*k-1)!!.

Original entry on oeis.org

1, 1, 3, 18, 123, 1098, 11806, 150406, 2218065, 37206485, 699604235, 14572941915, 333037896380, 8283300923765, 222714069807495, 6436292165450693, 198941178161054798, 6548632634238445779, 228705772883364303114, 8446082393596031365629, 328846269698068735291665, 13462627492562640070346824
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 12 2018

Keywords

Comments

Weigh transform of A001147.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(doublefactorial(2*i-1), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jun 13 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[(1 + x^k)^(2 k - 1)!!, {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (2 d - 1)!!, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 21}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A001147(k).

A363254 Product_{n>=1} (1 + a(n)*x^n) = 1 + 1!!*x + 3!!*x^2 + 5!!*x^3 + 7!!*x^4 + ...

Original entry on oeis.org

1, 3, 12, 93, 816, 9264, 122028, 1863849, 32001504, 614224272, 12989299596, 300599511744, 7550646317520, 204694926767040, 5955892801274796, 185160666502244433, 6125200081143892800, 214838236392631067424, 7963817560398871790604, 311101474513327693885056
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A[m_, n_] := A[m, n] = Which[m == 1, (2 n - 1)!!, m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1] A[m, n - m + 1]]; a[n_] := A[n, n]; a /@ Range[1, 20]

A363255 Product_{n>=1} 1 / (1 - a(n)*x^n) = 1 + 1!!*x + 3!!*x^2 + 5!!*x^3 + 7!!*x^4 + ...

Original entry on oeis.org

1, 2, 12, 86, 816, 9126, 122028, 1855802, 32001504, 613558458, 12989299596, 300515004558, 7550646317520, 204680035934550, 5955892801274796, 185157207502788074, 6125200081143892800, 214837212308039658666, 7963817560398871790604, 311101097650387613661510
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A[m_, n_] := A[m, n] = Which[m == 1, (2 n - 1)!!, m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1] A[m - 1, n - m + 1]]; a[n_] := A[n, n]; a /@ Range[1, 20]
Showing 1-4 of 4 results.