cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A305870 Product_{n>=1} (1 + x^n)^a(n) = g.f. of A001147 (double factorial of odd numbers).

Original entry on oeis.org

1, 3, 12, 90, 816, 9206, 122028, 1859550, 32002076, 613891800, 12989299596, 300556868286, 7550646317520, 204687481411974, 5955892982437120, 185158929517924710, 6125200081143892800, 214837724609534836158, 7963817560398871790604, 311101285877490394183800, 12773912991134665452205048
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 12 2018

Keywords

Comments

Inverse weigh transform of A001147.

Examples

			(1 + x) * (1 + x^2)^3 * (1 + x^3)^12 * (1 + x^4)^90 * (1 + x^5)^816 * ... * (1 + x^n)^a(n) * ... = 1 + 1*x + 1*3*x^2 + 1*3*5*x^3 + 1*3*5*7*x^4 + ... + A001147(k)*x^k + ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; doublefactorial(2*n-1)-b(n, n-1) end:
    seq(a(n), n=1..23);  # Alois P. Heinz, Jun 13 2018
  • Mathematica
    nn = 21; f[x_] := Product[(1 + x^n)^a[n], {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1/(1 + ContinuedFractionK[-k x, 1, {k, 1, nn}]), {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

Formula

Product_{n>=1} (1 + x^n)^a(n) = 1/(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - ...)))))).

A305867 Expansion of Product_{k>=1} 1/(1 - x^k)^(2*k-1)!!.

Original entry on oeis.org

1, 1, 4, 19, 130, 1120, 11960, 151595, 2230550, 37361755, 701873371, 14610774346, 333746628499, 8298025724194, 223049950124065, 6444634486214748, 199165237980655863, 6555102341516877027, 228905611339161301812, 8452656930719845696590, 329075775511339959533232, 13471099892869946627980017
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 12 2018

Keywords

Comments

Euler transform of A001147.

Crossrefs

Programs

  • Maple
    N:= 25:
    S:=series(mul((1-x^k)^(-doublefactorial(2*k-1)),k=1..N),x,N+1):
    seq(coeff(S,x,n),n=0..N); # Robert Israel, Jun 12 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(2 k - 1)!!, {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (2 d - 1)!!, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 21}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A001147(k).

A363254 Product_{n>=1} (1 + a(n)*x^n) = 1 + 1!!*x + 3!!*x^2 + 5!!*x^3 + 7!!*x^4 + ...

Original entry on oeis.org

1, 3, 12, 93, 816, 9264, 122028, 1863849, 32001504, 614224272, 12989299596, 300599511744, 7550646317520, 204694926767040, 5955892801274796, 185160666502244433, 6125200081143892800, 214838236392631067424, 7963817560398871790604, 311101474513327693885056
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A[m_, n_] := A[m, n] = Which[m == 1, (2 n - 1)!!, m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1] A[m, n - m + 1]]; a[n_] := A[n, n]; a /@ Range[1, 20]

A363255 Product_{n>=1} 1 / (1 - a(n)*x^n) = 1 + 1!!*x + 3!!*x^2 + 5!!*x^3 + 7!!*x^4 + ...

Original entry on oeis.org

1, 2, 12, 86, 816, 9126, 122028, 1855802, 32001504, 613558458, 12989299596, 300515004558, 7550646317520, 204680035934550, 5955892801274796, 185157207502788074, 6125200081143892800, 214837212308039658666, 7963817560398871790604, 311101097650387613661510
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A[m_, n_] := A[m, n] = Which[m == 1, (2 n - 1)!!, m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1] A[m - 1, n - m + 1]]; a[n_] := A[n, n]; a /@ Range[1, 20]
Showing 1-4 of 4 results.