cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380497 Euler transform of primorial numbers.

Original entry on oeis.org

1, 2, 9, 46, 314, 3072, 37641, 603510, 11148030, 249327430, 7040987792, 216220333314, 7895699690498, 321315600822232, 13770543972819903, 644232544408157820, 33954066516677635554, 1994206929690480710244, 121461036181617491970561, 8111955386813996410196454, 574814471423312085719652432
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2025

Keywords

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; `if`(n<1, 1, p(n-1)*ithprime(n)) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
          add(d*p(d), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jan 25 2025
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1 - x^k)^Product[Prime[j], {j, k}], {k, 1, nmax}], {x, 0, nmax}], x]
    primorial[n_] := Product[Prime[j], {j, 1, n}]; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d primorial[d], {d, Divisors[j]}] a[n - j], {j, 1, n}]/n]; Table[a[n], {n, 0, 20}]

Formula

G.f.: Product_{k>=1} 1 / (1 - x^k)^prime(k)#.

A380614 Product_{n>=1} (1 + x^n)^a(n) = Sum_{n>=0} prime(n)# * x^n.

Original entry on oeis.org

2, 5, 20, 155, 1860, 24970, 444060, 8583935, 202071920, 5992773714, 186947632200, 7001535728810, 288868991951760, 12455290280871150, 587972068547997856, 31327583556949986095, 1856116108295418943020, 113366872636395467452840, 7619343577986975410930880, 541957669076266404650853414
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 28 2025

Keywords

Comments

Inverse Weigh transform of primorial numbers.

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; `if`(n<1, 1, p(n-1)*ithprime(n)) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; p(n)-b(n, n-1) end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Jan 28 2025
  • Mathematica
    primorial[n_] := Product[Prime[j], {j, 1, n}]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := a[n] = primorial[n] - b[n, n - 1]; Array[a, 20]
Showing 1-2 of 2 results.