A380498 Inverse Euler transform of primorial numbers.
2, 3, 20, 150, 1860, 24950, 444060, 8583780, 202071920, 5992771854, 186947632200, 7001535703840, 288868991951760, 12455290280427090, 587972068547997856, 31327583556941402160, 1856116108295418943020, 113366872636395265380920, 7619343577986975410930880, 541957669076266398658079700
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Primorial.
Programs
-
Maple
p:= proc(n) option remember; `if`(n<1, 1, p(n-1)*ithprime(n)) end: ietr:= proc(p) uses numtheory; (c-> proc(n) option remember; `if`(n=0, 1, add(mobius(n/d)*c(d), d=divisors(n))/n) end)( proc(n) option remember; n*p(n)-add(thisproc(j)*p(n-j), j=1..n-1) end) end: a:= ietr(p): seq(a(n), n=1..20); # Alois P. Heinz, Jan 25 2025
-
Mathematica
primorial[n_] := Product[Prime[j], {j, 1, n}]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i] + j - 1, j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := primorial[n] - b[n, n - 1]; a /@ Range[20]
Formula
Product_{n>=1} 1 / (1 - x^n)^a(n) = Sum_{n>=0} prime(n)# * x^n.
Comments