cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380498 Inverse Euler transform of primorial numbers.

Original entry on oeis.org

2, 3, 20, 150, 1860, 24950, 444060, 8583780, 202071920, 5992771854, 186947632200, 7001535703840, 288868991951760, 12455290280427090, 587972068547997856, 31327583556941402160, 1856116108295418943020, 113366872636395265380920, 7619343577986975410930880, 541957669076266398658079700
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 25 2025

Keywords

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; `if`(n<1, 1, p(n-1)*ithprime(n)) end:
    ietr:= proc(p) uses numtheory; (c-> proc(n) option remember;
             `if`(n=0, 1, add(mobius(n/d)*c(d), d=divisors(n))/n) end)(
              proc(n) option remember; n*p(n)-add(thisproc(j)*p(n-j), j=1..n-1) end)
           end:
    a:= ietr(p):
    seq(a(n), n=1..20);  # Alois P. Heinz, Jan 25 2025
  • Mathematica
    primorial[n_] := Product[Prime[j], {j, 1, n}]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i] + j - 1, j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := primorial[n] - b[n, n - 1]; a /@ Range[20]

Formula

Product_{n>=1} 1 / (1 - x^n)^a(n) = Sum_{n>=0} prime(n)# * x^n.

A380613 Expansion of Product_{k>=1} (1 + x^k)^prime(k)#.

Original entry on oeis.org

1, 2, 7, 42, 291, 2970, 36950, 597100, 11070875, 248103940, 7018494836, 215718595582, 7881561212732, 320881902092122, 13754717161317416, 643588827524430916, 33926485821837232397, 1992916854095359256932, 121393059052727838936847, 8107963745977267426512386, 574571379331620422000295082
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 28 2025

Keywords

Comments

Weigh transform of primorial numbers.

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; `if`(n<1, 1, p(n-1)*ithprime(n)) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(p(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jan 28 2025
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + x^k)^Product[Prime[j], {j, 1, k}], {k, 1, nmax}], {x, 0, nmax}], x]
    primorial[n_] := Product[Prime[j], {j, 1, n}]; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(j/d + 1) d primorial[d], {d, Divisors[j]}] a[n - j], {j, 1, n}]/n]; Table[a[n], {n, 0, 20}]
Showing 1-2 of 2 results.