A358552 Node-height of the rooted tree with Matula-Goebel number n. Number of nodes in the longest path from root to leaf.
1, 2, 3, 2, 4, 3, 3, 2, 3, 4, 5, 3, 4, 3, 4, 2, 4, 3, 3, 4, 3, 5, 4, 3, 4, 4, 3, 3, 5, 4, 6, 2, 5, 4, 4, 3, 4, 3, 4, 4, 5, 3, 4, 5, 4, 4, 5, 3, 3, 4, 4, 4, 3, 3, 5, 3, 3, 5, 5, 4, 4, 6, 3, 2, 4, 5, 4, 4, 4, 4, 5, 3, 4, 4, 4, 3, 5, 4, 6, 4, 3, 5, 5, 3, 4, 4, 5, 5, 4, 4, 4, 4, 6, 5, 4, 3, 5, 3, 5, 4, 5, 4, 4, 4, 4, 3, 4, 3
Offset: 1
Keywords
Examples
The Matula-Goebel number of ((ooo(o))) is 89, and it has node-height 4, so a(89) = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
Crossrefs
Programs
-
Mathematica
MGTree[n_]:=If[n==1,{},MGTree/@If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Table[Depth[MGTree[n]]-1,{n,100}]
-
PARI
A358552(n) = { my(v=factor(n)[, 1], d=0); while(#v, d++; v=fold(setunion, apply(p->factor(primepi(p))[, 1]~, v))); (1+d); }; \\ (after Kevin Ryde in A109082) - Antti Karttunen, Oct 23 2023
-
Python
from functools import lru_cache from sympy import isprime, primepi, primefactors @lru_cache(maxsize=None) def A358552(n): if n == 1 : return 1 if isprime(n): return 1+A358552(primepi(n)) return max(A358552(p) for p in primefactors(n)) # Chai Wah Wu, Apr 15 2024
Formula
a(n) = A109082(n) + 1.
Extensions
Data section extended up to a(108) by Antti Karttunen, Oct 23 2023
Comments