A358564 Decimal expansion of Gi(0), where Gi is the inhomogeneous Airy function of the first kind (also called Scorer function).
2, 0, 4, 9, 7, 5, 5, 4, 2, 4, 8, 2, 0, 0, 0, 2, 4, 5, 0, 5, 0, 3, 0, 7, 4, 5, 6, 3, 6, 4, 5, 3, 7, 8, 5, 1, 1, 9, 8, 2, 4, 2, 7, 2, 9, 5, 4, 9, 5, 3, 2, 1, 6, 8, 3, 4, 6, 9, 5, 9, 5, 8, 4, 3, 3, 8, 0, 9, 8, 8, 3, 9, 7, 6, 8, 5, 0, 6, 8, 8, 0, 1, 7, 6, 4, 6, 2
Offset: 0
Examples
0.204975542482000245050307456364537851198242729549532168346959584338098839...
References
- Scorer, R. S., Numerical evaluation of integrals of the form Integral_{x=x1..x2} f(x)*e^(i*phi(x))dx and the tabulation of the function Gi(z)=(1/Pi)*Integral_{u=0..oo} sin(u*z+u^3/3) du, Quart. J. Mech. Appl. Math. 3 (1950), 107-112.
Links
- Amparo Gil, Javier Segura, and Nico Temme, On nonoscillating integrals for computing inhomogeneous Airy functions, Mathematics of Computation 70.235 (2001): 1183-1194.
- [DLMF] NIST Digital Library of Mathematical Functions, Eq. 9.12.6.
- Allan J. MacLeod, Computation of inhomogeneous Airy functions, Journal of Computational and Applied Mathematics, Volume 53, Issue 1, 1994, Pages 109-116, ISSN 0377-0427.
- Wikipedia, Scorer's function.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Mathematica
First[RealDigits[N[ScorerGi[0],90]]] (* Stefano Spezia, Nov 28 2022 *)
-
PARI
airy(0)[2]/3
-
PARI
1/(3^(7/6)*gamma(2/3))
-
PARI
sqrt(3)*gamma(1/3)/(3^(7/6)*2*Pi)
-
PARI
1/(3^(3/4)*2^(2/9)*Pi^(1/3)*sqrtn(agm(2,(sqrt(2+sqrt(3)))),3))
-
SageMath
1/(3^(7/6)*gamma(2/3)).n(algorithm='scipy', prec=250)