cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A358569 a(n) is the minimal permanent of an n X n Toeplitz matrix using the integers 0 to 2*(n - 1).

Original entry on oeis.org

1, 0, 1, 16, 451, 17376, 1022546
Offset: 0

Views

Author

Stefano Spezia, Nov 22 2022

Keywords

Comments

Also minimal permanent of an n X n Hankel matrix using the integers 0 to 2*(n - 1). - Stefano Spezia, Dec 22 2023

Examples

			a(2) = 1:
    [1, 0;
     2, 1]
a(3) = 16:
    [0, 1, 3;
     2, 0, 1;
     4, 2, 0]
		

Crossrefs

Cf. A350937 (integers from 1 to 2*n - 1), A358567 (minimal determinant), A358568 (maximal determinant), A358570 (maximal).

Extensions

a(5)-a(6) from Lucas A. Brown, Dec 03 2022

A358570 a(n) is the maximal permanent of an n X n Toeplitz matrix using the integers 0 to 2*(n - 1).

Original entry on oeis.org

1, 0, 4, 121, 6109, 494610, 58369622
Offset: 0

Views

Author

Stefano Spezia, Nov 22 2022

Keywords

Comments

Also maximal permanent of an n X n Hankel matrix using the integers 0 to 2*(n - 1). - Stefano Spezia, Dec 22 2023

Examples

			a(2) = 4:
    [2, 0;
     1, 2]
a(3) = 121:
    [4, 2, 1;
     3, 4, 2;
     0, 3, 4]
		

Crossrefs

Cf. A350938 (integers from 1 to 2*n - 1), A358567 (minimal determinant), A358568 (maximal determinant), A358569 (minimal).

Extensions

a(5)-a(6) from Lucas A. Brown, Dec 03 2022

A358568 a(n) is the maximal determinant of an n X n Toeplitz matrix using the integers 0 to 2*(n - 1).

Original entry on oeis.org

1, 0, 4, 74, 1781, 58180, 2579770, 152337045
Offset: 0

Views

Author

Stefano Spezia, Nov 22 2022

Keywords

Examples

			a(2) = 4:
    [2, 0;
     1, 2]
a(3) = 74:
    [4, 0, 2;
     3, 4, 0;
     1, 3, 4]
		

Crossrefs

Cf. A350931 (integers from 1 to 2*n - 1), A358567 (minimal), A358569 (minimal permanent), A358570 (maximal permanent).

Extensions

a(5)-a(7) from Lucas A. Brown, Dec 03 2022
Showing 1-3 of 3 results.