A358579 Numbers k such that the k-th standard ordered rooted tree has the same number of leaves as internal (non-leaf) nodes.
2, 6, 7, 9, 20, 22, 23, 26, 27, 29, 35, 41, 66, 76, 78, 79, 84, 86, 87, 90, 91, 93, 97, 102, 103, 106, 107, 109, 115, 117, 130, 136, 138, 139, 141, 146, 153, 163, 169, 193, 196, 197, 201, 226, 241, 262, 263, 296, 300, 302, 303, 308, 310, 311, 314, 315, 317
Offset: 1
Keywords
Examples
The terms together with their corresponding rooted trees begin: 2: (o) 6: (o(o)) 7: ((oo)) 9: ((o)(o)) 20: (oo((o))) 22: (o(((o)))) 23: (((o)(o))) 26: (o(o(o))) 27: ((o)(o)(o)) 29: ((o((o)))) 35: (((o))(oo)) 41: (((o(o)))) 66: (o(o)(((o)))) 76: (oo(ooo)) 78: (o(o)(o(o))) 79: ((o(((o))))) 84: (oo(o)(oo)) 86: (o(o(oo)))
Crossrefs
These ordered trees are counted by A000891.
Programs
-
Mathematica
stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]]; srt[n_]:=If[n==1,{},srt/@stc[n-1]]; Select[Range[100],Count[srt[#],{},{0,Infinity}]==Count[srt[#],[_],{0,Infinity}]&]
Comments