A000891 a(n) = (2*n)!*(2*n+1)! / (n! * (n+1)!)^2.
1, 3, 20, 175, 1764, 19404, 226512, 2760615, 34763300, 449141836, 5924217936, 79483257308, 1081724803600, 14901311070000, 207426250094400, 2913690606794775, 41255439318353700, 588272005095043500
Offset: 0
Keywords
Examples
G.f. = 1 + 3*x + 20*x^2 + 175*x^3 + 1764*x^4 + 19404*x^5 + ... From _Gus Wiseman_, Nov 27 2022: (Start) The a(2) = 20 ordered rooted trees with 6 nodes and 3 leaves: (((o)oo)) (((o)o)o) (((o))oo) (((oo)o)) (((oo))o) ((o)(o)o) (((ooo))) ((o)(oo)) ((o)o(o)) ((o(o)o)) ((o(o))o) (o((o))o) ((o(oo))) ((oo)(o)) (o(o)(o)) ((oo(o))) (o((o)o)) (oo((o))) (o((oo))) (o(o(o))) (End)
References
- J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 8.
- E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 94.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Abderrahim Arabi, Hacène Belbachir, and Jean-Philippe Dubernard, Enumeration of parallelogram polycubes, arXiv:2105.00971 [cs.DM], 2021.
- Elena Barcucci, Andrea Frosini and Simone Rinaldi, On directed-convex polyominoes in a rectangle, Discr. Math., 298 (2005). 62-78.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, J. Integer Sequ., Vol. 9 (2006), Article 06.2.4.
- Paul Barry, On a Generalization of the Narayana Triangle, J. Int. Seq. 14 (2011), Article 11.4.5.
- William Y. C. Chen, Sabrina X. M. Pang, Ellen X. Y. Qu, and Richard P. Stanley, Pairs of Noncrossing Free Dyck Paths and Noncrossing Partitions, arXiv:0804.2930 [math.CO], 2008.
- William Y. C. Chen, Sabrina X. M. Pang, Ellen X. Y. Qu, and Richard P. Stanley, Pairs of Noncrossing Free Dyck Paths and Noncrossing Partitions, Discrete Math., 309 (2009), 2834-2838.
- Robert de Mello Koch, Animik Ghosh, and Hendrik J. R. Van Zyl, Bosonic Fortuity in Vector Models, arXiv:2504.14181 [hep-th], 2025. See p. 9; Journal of High Energy Physics 06 (2025) 246.
- Ivan Marin and Emmanuel Wagner, A cubic defining algebra for the Links-Gould polynomial. arXiv preprint arXiv:1203.5981 [math.GT], 2012. - From _N. J. A. Sloane_, Sep 21 2012
- Henri Mühle, Counting Proper Mergings of Chains and Antichains, arXiv:1206.3922 [math.CO], 2012.
- Guoce Xin, Determinant formulas relating to tableaux of bounded height, Adv. Appl. Math. 45 (2010) 197-211.
Crossrefs
Programs
-
Haskell
a000891 n = a001263 (2 * n - 1) n -- Reinhard Zumkeller, Oct 10 2013
-
Magma
[Factorial(2*n)*Factorial(2*n+1) / (Factorial(n) * Factorial(n+1))^2: n in [0..20]]; // Vincenzo Librandi, Aug 15 2011
-
Maple
with(combstruct): bin := {B=Union(Z,Prod(B,B))} :seq(1/2*binomial(2*i,i)*(count([B,bin,unlabeled],size=i)), i=1..18) ; # Zerinvary Lajos, Jun 06 2007
-
Mathematica
a[ n_] := If[ n == -1, 0, Binomial[2 n + 1, n]^2 / (2 n + 1)]; (* Michael Somos, May 28 2014 *) a[ n_] := SeriesCoefficient[ (1 - Hypergeometric2F1[ -1/2, 1/2, 1, 16 x]) / (4 x), {x, 0, n}]; (* Michael Somos, May 28 2014 *) a[ n_] := If[ n < 0, 0, (2 n)! SeriesCoefficient[ BesselI[0, 2 x] BesselI[1, 2 x] / x, {x, 0, 2 n}]]; (* Michael Somos, May 28 2014 *) a[ n_] := SeriesCoefficient[ (1 - EllipticE[ 16 x] / (Pi/2)) / (4 x), {x, 0, n}]; (* Michael Somos, Sep 18 2016 *) a[n_] := (2 n + 1) CatalanNumber[n]^2; Array[a, 20, 0] (* Peter Luschny, Mar 03 2020 *)
-
PARI
{a(n) = binomial(2*n+1, n)^2 / (2*n + 1)}; /* Michael Somos, Jun 22 2005 */
-
PARI
a(n) = matdet(matrix(n, n, i, j, binomial(n+j+1,i+1))) \\ Hugo Pfoertner, Oct 22 2022
Formula
-4*a(n) = A010370(n+1).
G.f.: (1 - E(16*x)/(Pi/2))/(4*x) where E() is the elliptic integral of the second kind. [edited by Olivier Gérard, Feb 16 2011]
G.f.: 3F2(1, 1/2, 3/2; 2,2; 16*x)= (1 - 2F1(-1/2, 1/2; 1; 16*x)) / (4*x). - Olivier Gérard, Feb 16 2011
E.g.f.: Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = BesselI(0, 2*x) * BesselI(1, 2*x) / x. - Michael Somos, Jun 22 2005
For n > 0, a(n) = (n+2)*A000356(n) starting (1, 5, 35, 294, ...). - Gary W. Adamson, Apr 08 2011
a(n) = A001263(2*n+1,n+1) = binomial(2*n+1,n+1)*binomial(2*n+1,n)/(2*n+1) (central members of odd numbered rows of Narayana triangle).
G.f.: If G_N(x) = 1 + Sum_{k=1..N} ((2*k)!*(2*k+1)!*x^k)/(k!*(k+1)!)^2, G_N(x) = 1 + 12*x/(G(0) - 12*x); G(k) = 16*x*k^2 + 32*x*k + k^2 + 4*k + 12*x + 4 - 4*x*(2*k+3)*(2*k+5)*(k+2)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
D-finite with recurrence (n+1)^2*a(n) - 4*(2*n-1)*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
a(n) = A005558(2n). - Mark van Hoeij, Aug 20 2014
From Ilya Gutkovskiy, Feb 01 2017: (Start)
E.g.f.: 2F2(1/2,3/2; 2,2; 16*x).
a(n) ~ 2^(4*n+1)/(Pi*n^2). (End)
a(n) = det(M(n)) where M(n) is the n X n matrix with m(i,j) = binomial(n+j+1,i+1). - Benoit Cloitre, Oct 22 2022
a(n) = Integral_{x=0..16} x^n*W(x) dx, where W(x) = (16*EllipticE(1 - x/16) - x*EllipticK(1 - x/16))/(8*Pi^2*sqrt(x)), n=>0. W(x) diverges at x=0, monotonically decreases for x>0, and vanishes at x=16. EllipticE and EllipticK are elliptic functions. This integral representation as n-th moment of a positive function W(x) on the interval [0, 16] is unique. - Karol A. Penson, Dec 20 2023
Extensions
More terms from Andrew V. Sutherland, Mar 24 2008
Comments