cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A000891 a(n) = (2*n)!*(2*n+1)! / (n! * (n+1)!)^2.

Original entry on oeis.org

1, 3, 20, 175, 1764, 19404, 226512, 2760615, 34763300, 449141836, 5924217936, 79483257308, 1081724803600, 14901311070000, 207426250094400, 2913690606794775, 41255439318353700, 588272005095043500
Offset: 0

Views

Author

Keywords

Comments

Number of parallelogram polyominoes having n+1 columns and n+1 rows. - Emeric Deutsch, May 21 2003
Number of tilings of an hexagon.
a(n) is the number of non-crossing partitions of [2n+1] into n+1 blocks. For example, a[1] counts 13-2, 1-23, 12-3. - David Callan, Jul 25 2005
The number of returning walks of length 2n on the upper half of a square lattice, since a(n) = Sum_{k=0..2n} binomial(2n,k)*A126120(k)*A126869(n-k). - Andrew V. Sutherland, Mar 24 2008
For sequences counting walks in the upper half-plane starting from the origin and finishing at the lattice points (0,m) see A145600 (m = 1), A145601 (m = 2), A145602 (m = 3) and A145603 (m = 4). - Peter Bala, Oct 14 2008
The number of proper mergings of two n-chains. - Henri Mühle, Aug 17 2012
a(n) is number of pairs of non-intersecting lattice paths from (0,0) to (n+1,n+1) using (1,0) and (0,1) as steps. Here, non-intersecting means two paths do not share a vertex except the origin and the destination. For example, a(1) = 3 because we have three such pairs from (0,0) to (2,2): {NNEE,EENN}, {NNEE,ENEN}, {NENE,EENN}. - Ran Pan, Oct 01 2015
Also the number of ordered rooted trees with 2(n+1) nodes and n+1 leaves, i.e., half of the nodes are leaves. These trees are ranked by A358579. The unordered version is A185650. - Gus Wiseman, Nov 27 2022
The number of secondary GL(2) invariants constructed from n+1 two component vectors. This number was evaluated by using the Molien-Weyl formula to compute the Hilbert series of the ring of invariants. - Jaco van Zyl, Jun 30 2025

Examples

			G.f. = 1 + 3*x + 20*x^2 + 175*x^3 + 1764*x^4 + 19404*x^5 + ...
From _Gus Wiseman_, Nov 27 2022: (Start)
The a(2) = 20 ordered rooted trees with 6 nodes and 3 leaves:
  (((o)oo))  (((o)o)o)  (((o))oo)
  (((oo)o))  (((oo))o)  ((o)(o)o)
  (((ooo)))  ((o)(oo))  ((o)o(o))
  ((o(o)o))  ((o(o))o)  (o((o))o)
  ((o(oo)))  ((oo)(o))  (o(o)(o))
  ((oo(o)))  (o((o)o))  (oo((o)))
             (o((oo)))
             (o(o(o)))
(End)
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 8.
  • E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 94.

Crossrefs

Cf. A145600, A145601, A145602, A145603. - Peter Bala, Oct 14 2008
Equals half of A267981.
Counts the trees ranked by A358579.
A001263 counts ordered rooted trees by nodes and leaves.
A090181 counts ordered rooted trees by nodes and internals.

Programs

  • Haskell
    a000891 n = a001263 (2 * n - 1) n  -- Reinhard Zumkeller, Oct 10 2013
  • Magma
    [Factorial(2*n)*Factorial(2*n+1) / (Factorial(n) * Factorial(n+1))^2: n in [0..20]]; // Vincenzo Librandi, Aug 15 2011
    
  • Maple
    with(combstruct): bin := {B=Union(Z,Prod(B,B))} :seq(1/2*binomial(2*i,i)*(count([B,bin,unlabeled],size=i)), i=1..18) ; # Zerinvary Lajos, Jun 06 2007
  • Mathematica
    a[ n_] := If[ n == -1, 0, Binomial[2 n + 1, n]^2 / (2 n + 1)]; (* Michael Somos, May 28 2014 *)
    a[ n_] := SeriesCoefficient[ (1 - Hypergeometric2F1[ -1/2, 1/2, 1, 16 x]) / (4 x), {x, 0, n}]; (* Michael Somos, May 28 2014 *)
    a[ n_] := If[ n < 0, 0, (2 n)! SeriesCoefficient[ BesselI[0, 2 x] BesselI[1, 2 x] / x, {x, 0, 2 n}]]; (* Michael Somos, May 28 2014 *)
    a[ n_] := SeriesCoefficient[ (1 - EllipticE[ 16 x] / (Pi/2)) / (4 x), {x, 0, n}]; (* Michael Somos, Sep 18 2016 *)
    a[n_] := (2 n + 1) CatalanNumber[n]^2;
    Array[a, 20, 0] (* Peter Luschny, Mar 03 2020 *)
  • PARI
    {a(n) = binomial(2*n+1, n)^2 / (2*n + 1)}; /* Michael Somos, Jun 22 2005 */
    
  • PARI
    a(n) = matdet(matrix(n, n, i, j, binomial(n+j+1,i+1))) \\ Hugo Pfoertner, Oct 22 2022
    

Formula

-4*a(n) = A010370(n+1).
G.f.: (1 - E(16*x)/(Pi/2))/(4*x) where E() is the elliptic integral of the second kind. [edited by Olivier Gérard, Feb 16 2011]
G.f.: 3F2(1, 1/2, 3/2; 2,2; 16*x)= (1 - 2F1(-1/2, 1/2; 1; 16*x)) / (4*x). - Olivier Gérard, Feb 16 2011
E.g.f.: Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = BesselI(0, 2*x) * BesselI(1, 2*x) / x. - Michael Somos, Jun 22 2005
a(n) = A001700(n)*A000108(n) = (1/2)*A000984(n+1)*A000108(n). - Zerinvary Lajos, Jun 06 2007
For n > 0, a(n) = (n+2)*A000356(n) starting (1, 5, 35, 294, ...). - Gary W. Adamson, Apr 08 2011
a(n) = A001263(2*n+1,n+1) = binomial(2*n+1,n+1)*binomial(2*n+1,n)/(2*n+1) (central members of odd numbered rows of Narayana triangle).
G.f.: If G_N(x) = 1 + Sum_{k=1..N} ((2*k)!*(2*k+1)!*x^k)/(k!*(k+1)!)^2, G_N(x) = 1 + 12*x/(G(0) - 12*x); G(k) = 16*x*k^2 + 32*x*k + k^2 + 4*k + 12*x + 4 - 4*x*(2*k+3)*(2*k+5)*(k+2)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
D-finite with recurrence (n+1)^2*a(n) - 4*(2*n-1)*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
a(n) = A005558(2n). - Mark van Hoeij, Aug 20 2014
a(n) = A000894(n) / (n+1) = A248045(n+1) / A000142(n+1). - Reinhard Zumkeller, Sep 30 2014
From Ilya Gutkovskiy, Feb 01 2017: (Start)
E.g.f.: 2F2(1/2,3/2; 2,2; 16*x).
a(n) ~ 2^(4*n+1)/(Pi*n^2). (End)
a(n) = A005408(n)*(A000108(n))^2. - Ivan N. Ianakiev, Nov 13 2019
a(n) = det(M(n)) where M(n) is the n X n matrix with m(i,j) = binomial(n+j+1,i+1). - Benoit Cloitre, Oct 22 2022
a(n) = Integral_{x=0..16} x^n*W(x) dx, where W(x) = (16*EllipticE(1 - x/16) - x*EllipticK(1 - x/16))/(8*Pi^2*sqrt(x)), n=>0. W(x) diverges at x=0, monotonically decreases for x>0, and vanishes at x=16. EllipticE and EllipticK are elliptic functions. This integral representation as n-th moment of a positive function W(x) on the interval [0, 16] is unique. - Karol A. Penson, Dec 20 2023

Extensions

More terms from Andrew V. Sutherland, Mar 24 2008

A185650 a(n) is the number of rooted trees with 2n vertices n of whom are leaves.

Original entry on oeis.org

1, 2, 8, 39, 214, 1268, 7949, 51901, 349703, 2415348, 17020341, 121939535, 885841162, 6511874216, 48359860685, 362343773669, 2736184763500, 20805175635077, 159174733727167, 1224557214545788, 9467861087020239, 73534456468877012, 573484090227222260
Offset: 1

Views

Author

Stepan Orevkov, Aug 29 2013

Keywords

Examples

			From _Gus Wiseman_, Nov 27 2022: (Start)
The a(1) = 1 through a(3) = 8 rooted trees:
  (o)  ((oo))  (((ooo)))
       (o(o))  ((o)(oo))
               ((o(oo)))
               ((oo(o)))
               (o((oo)))
               (o(o)(o))
               (o(o(o)))
               (oo((o)))
(End)
		

Crossrefs

The ordered version is A000891, ranked by A358579.
This is the central column of A055277.
These trees are ranked by A358578.
For height = internals we have A358587.
Square trees are counted by A358589.
A000081 counts rooted trees, ordered A000108.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internals, ordered A090181.

Programs

  • Mathematica
    terms = 23;
    m = 2 terms;
    T[, ] = 0;
    Do[T[x_, z_] = z x - x + x Exp[Sum[Series[1/k T[x^k, z^k], {x, 0, j}, {z, 0, j}], {k, 1, j}]] // Normal, {j, 1, m}];
    cc = CoefficientList[#, z]& /@ CoefficientList[T[x, z] , x];
    Table[cc[[2n+1, n+1]], {n, 1, terms}] (* Jean-François Alcover, Sep 14 2018 *)
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,{},{-2}]==n/2&]],{n,2,10,2}] (* Gus Wiseman, Nov 27 2022 *)
  • PARI
    \\ here R is A055277 as vector of polynomials
    R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1  + exp( sum(i=1, j, 1/i * subst( subst( A + x * O(x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)};
    {my(A=R(2*30)); vector(#A\2, k, polcoeff(A[2*k],k))} \\ Andrew Howroyd, May 21 2018

Extensions

Terms a(20) and beyond from Andrew Howroyd, May 21 2018

A358577 Matula-Goebel numbers of "square" rooted trees, i.e., whose height equals their number of leaves.

Original entry on oeis.org

1, 4, 12, 14, 18, 19, 21, 27, 40, 52, 60, 68, 70, 74, 78, 86, 89, 90, 91, 92, 95, 100, 102, 105, 107, 111, 117, 119, 122, 129, 130, 134, 135, 138, 146, 150, 151, 153, 161, 163, 169, 170, 175, 176, 181, 183, 185, 195, 201, 206, 207, 215, 219, 221, 225, 227, 230
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their corresponding rooted trees begin:
   1: o
   4: (oo)
  12: (oo(o))
  14: (o(oo))
  18: (o(o)(o))
  19: ((ooo))
  21: ((o)(oo))
  27: ((o)(o)(o))
  40: (ooo((o)))
  52: (oo(o(o)))
  60: (oo(o)((o)))
  68: (oo((oo)))
  70: (o((o))(oo))
  74: (o(oo(o)))
  78: (o(o)(o(o)))
  86: (o(o(oo)))
  89: ((ooo(o)))
  90: (o(o)(o)((o)))
		

Crossrefs

Internals instead of leaves: A358576, counted by A358587, ordered A358588.
Internals instead of height: A358578, counted by A185650, ordered A358579.
These trees are counted by A358589, ordered A358590.
A000081 counts rooted trees, ordered A000108.
A034781 counts trees by nodes and height.
A055277 counts trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[MGTree[#],{},{0,Infinity}]==Depth[MGTree[#]]-1&]

Formula

A358552(a(n)) = A109129(a(n)).

A358578 Matula-Goebel numbers of rooted trees whose number of leaves equals their number of internal (non-leaf) nodes.

Original entry on oeis.org

2, 6, 7, 18, 20, 21, 26, 34, 37, 43, 54, 60, 63, 67, 70, 78, 88, 91, 92, 95, 102, 111, 116, 119, 122, 129, 142, 146, 151, 162, 164, 173, 180, 181, 189, 200, 201, 202, 210, 227, 234, 236, 239, 245, 260, 264, 269, 273, 276, 278, 285, 306, 308, 314, 322, 333, 337
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their corresponding rooted trees begin:
   2: (o)
   6: (o(o))
   7: ((oo))
  18: (o(o)(o))
  20: (oo((o)))
  21: ((o)(oo))
  26: (o(o(o)))
  34: (o((oo)))
  37: ((oo(o)))
  43: ((o(oo)))
  54: (o(o)(o)(o))
  60: (oo(o)((o)))
  63: ((o)(o)(oo))
  67: (((ooo)))
  70: (o((o))(oo))
  78: (o(o)(o(o)))
  88: (ooo(((o))))
  91: ((oo)(o(o)))
		

Crossrefs

These trees are counted by A185650, ordered A358579.
Height instead of leaves: A358576, counted by A358587, ordered A358588.
Height instead of internals: A358577, counted by A358589, ordered A358590.
Positions of 0's in A358580.
A000081 counts rooted trees, ordered A000108.
A034781 counts trees by nodes and height.
A055277 counts trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[MGTree[#],{},{0,Infinity}]==Count[MGTree[#],[_],{0,Infinity}]&]

Formula

A342507(a(n)) = A109129(a(n)).

A358580 Difference between the number of leaves and the number of internal (non-leaf) nodes in the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 0, -1, 1, -2, 0, 0, 2, -1, -1, -3, 1, -1, 1, -2, 3, -1, 0, 1, 0, 0, -2, -2, 2, -3, 0, -1, 2, -2, -1, -4, 4, -3, 0, -1, 1, 0, 2, -1, 1, -2, 1, 0, -1, -2, -1, -3, 3, 1, -2, -1, 1, 2, 0, -4, 3, 1, -1, -2, 0, -1, -3, 0, 5, -2, -2, 0, 1, -2, 0, -1, 2, -1, 1, -3
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The Matula-Goebel number of ((ooo(o))) is 89, and it has 4 leaves and 3 internal nodes, so a(89) = 1.
		

Crossrefs

Zeros are A358578, counted by A185650 (ordered A358579).
Positions of positive terms are counted by A358581, negative A358582.
Positions of nonnegative terms are counted by A358583, nonpositive A358584.
A000081 counts rooted trees, ordered A000108.
A034781 counts trees by nodes and height.
A055277 counts trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Count[MGTree[n],{},{0,Infinity}]-Count[MGTree[n],[_],{0,Infinity}],{n,100}]

Formula

a(n) = A109129(n) - A342507(n).

A358590 Number of square ordered rooted trees with n nodes.

Original entry on oeis.org

1, 0, 1, 0, 6, 5, 36, 84, 309, 890, 3163, 9835, 32979, 108252, 360696, 1192410, 3984552, 13276769, 44371368, 148402665, 497072593, 1665557619, 5586863093, 18750662066, 62968243731, 211565969511, 711187790166, 2391640404772, 8045964959333, 27077856222546
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

We say that a tree is square if it has the same height as number of leaves.

Examples

			The a(1) = 1 through a(6) = 5 ordered trees:
  o  .  (oo)  .  ((o)oo)  ((o)(o)o)
                 ((oo)o)  ((o)(oo))
                 ((ooo))  ((o)o(o))
                 (o(o)o)  ((oo)(o))
                 (o(oo))  (o(o)(o))
                 (oo(o))
		

Crossrefs

For internals instead of height we have A000891, unordered A185650 aerated.
For internals instead of leaves we have A358588, unordered A358587.
The unordered version is A358589, ranked by A358577.
A000108 counts ordered rooted trees, unordered A000081.
A001263 counts ordered rooted trees by nodes and leaves, unordered A055277.
A080936 counts ordered rooted trees by nodes and height, unordered A034781.
A090181 counts ordered rooted trees by nodes and internals, unord. A358575.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Count[#,{},{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
  • PARI
    \\ R(n,f) enumerates trees by height(h), nodes(x) and leaves(y).
    R(n,f) = {my(A=O(x*x^n), Z=0); for(h=1, n, my(p = A); A = x*(y - 1  + 1/(1 - A + O(x^n))); Z += f(h, A-p)); Z}
    seq(n) = {Vec(R(n, (h,p)->polcoef(p,h,y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(16) and beyond from Andrew Howroyd, Jan 01 2023

A358586 Number of ordered rooted trees with n nodes, at least half of which are leaves.

Original entry on oeis.org

1, 1, 1, 4, 7, 31, 66, 302, 715, 3313, 8398, 39095, 104006, 484706, 1337220, 6227730, 17678835, 82204045, 238819350, 1108202513, 3282060210, 15195242478, 45741281820, 211271435479, 644952073662, 2971835602526, 9183676536076, 42217430993002, 131873975875180, 604834233372884
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 7 ordered trees:
  o  (o)  (oo)  (ooo)   (oooo)
                ((o)o)  ((o)oo)
                ((oo))  ((oo)o)
                (o(o))  ((ooo))
                        (o(o)o)
                        (o(oo))
                        (oo(o))
		

Crossrefs

For equality we have A000891, unordered A185650.
Odd-indexed terms appear to be A065097.
The unordered version is A358583.
The opposite is the same, unordered A358584.
The strict case is A358585, unordered A358581.
A000108 counts ordered rooted trees, unordered A000081.
A001263 counts ordered rooted trees by nodes and leaves, unordered A055277.
A080936 counts ordered rooted trees by nodes and height, unordered A034781.
A090181 counts ordered rooted trees by nodes and internals, unord. A358575.
A358590 counts square ordered trees, unordered A358589 (ranked by A358577).

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Count[#,{},{0,Infinity}]>=Count[#,[_],{0,Infinity}]&]],{n,1,10}]
  • PARI
    a(n) = if(n==1, 1, n--; (binomial(2*n,n)/(n+1) + if(n%2, binomial(n, (n-1)/2)^2 / n))/2) \\ Andrew Howroyd, Jan 13 2024

Formula

From Andrew Howroyd, Jan 13 2024: (Start)
a(n) = Sum_{k=1..floor(n/2)} A001263(n-1, k) for n >= 2.
a(2*n) = (A000108(2*n-1) + A000891(n-1))/2 for n >= 1;
a(2*n+1) = A000108(2*n)/2 for n >= 1. (End)

Extensions

a(16) onwards from Andrew Howroyd, Jan 13 2024

A358581 Number of rooted trees with n nodes, most of which are leaves.

Original entry on oeis.org

1, 0, 1, 1, 4, 5, 20, 28, 110, 169, 663, 1078, 4217, 7169, 27979, 49191, 191440, 345771, 1341974, 2477719, 9589567, 18034670, 69612556, 132984290, 511987473, 991391707, 3807503552, 7460270591, 28585315026, 56595367747, 216381073935, 432396092153
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2022

Keywords

Examples

			The a(1) = 1 through a(7) = 20 trees:
  o  .  (oo)  (ooo)  (oooo)   (ooooo)   (oooooo)
                     ((ooo))  ((oooo))  ((ooooo))
                     (o(oo))  (o(ooo))  (o(oooo))
                     (oo(o))  (oo(oo))  (oo(ooo))
                              (ooo(o))  (ooo(oo))
                                        (oooo(o))
                                        (((oooo)))
                                        ((o)(ooo))
                                        ((o(ooo)))
                                        ((oo)(oo))
                                        ((oo(oo)))
                                        ((ooo(o)))
                                        (o((ooo)))
                                        (o(o)(oo))
                                        (o(o(oo)))
                                        (o(oo(o)))
                                        (oo((oo)))
                                        (oo(o)(o))
                                        (oo(o(o)))
                                        (ooo((o)))
		

Crossrefs

For equality we have A185650 aerated, ranked by A358578.
The opposite version is A358582, non-strict A358584.
The non-strict version is A358583.
The ordered version is A358585, odd-indexed terms A065097.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internal nodes, ordered A090181.
A358589 counts square trees, ranked by A358577, ordered A358590.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,{},{0,Infinity}]>Count[#,[_],{0,Infinity}]&]],{n,0,10}]
  • PARI
    \\ See A358584 for R(n).
    seq(n) = {my(A=R(n)); vector(n, n, my(u=Vecrev(A[n]/y)); vecsum(u[n\2+1..#u]))} \\ Andrew Howroyd, Dec 31 2022

Formula

A358581(n) + A358584(n) = A000081(n).
A358582(n) + A358583(n) = A000081(n).
a(n) = Sum_{k=floor(n/2)+1..n} A055277(n, k). - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(19) and beyond from Andrew Howroyd, Dec 31 2022

A358592 Matula-Goebel numbers of rooted trees whose height, number of leaves, and number of internal (non-leaf) nodes are all equal.

Original entry on oeis.org

18, 21, 60, 70, 78, 91, 92, 95, 102, 111, 119, 122, 129, 146, 151, 181, 201, 227, 264, 269, 308, 348, 376, 406, 418, 426, 452, 492, 497, 519, 551, 562, 574, 583, 596, 606, 659, 664, 668, 698, 707, 708, 717, 779, 794, 796, 809, 826, 834, 911, 932, 934, 942, 958
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their corresponding rooted trees begin:
   18: (o(o)(o))
   21: ((o)(oo))
   60: (oo(o)((o)))
   70: (o((o))(oo))
   78: (o(o)(o(o)))
   91: ((oo)(o(o)))
   92: (oo((o)(o)))
   95: (((o))(ooo))
  102: (o(o)((oo)))
  111: ((o)(oo(o)))
  119: ((oo)((oo)))
  122: (o(o(o)(o)))
  129: ((o)(o(oo)))
  146: (o((o)(oo)))
  151: ((oo(o)(o)))
  181: ((o(o)(oo)))
  201: ((o)((ooo)))
  227: (((oo)(oo)))
		

Crossrefs

Any number of leaves: A358576, counted by A358587 (ordered A358588).
Any number of internals: A358577, counted by A358589, ordered A358590.
Any height: A358578, ordered A358579, counted by A185650.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[MGTree[#],[_],{0,Infinity}]==Count[MGTree[#],{},{0,Infinity}]==Depth[MGTree[#]]-1&]

Formula

A358552(a(n)) = A342507(a(n)) = A109129(a(n)).

A358588 Number of n-node ordered rooted trees of height equal to the number of internal (non-leaf) nodes.

Original entry on oeis.org

0, 0, 0, 0, 1, 8, 41, 171, 633, 2171, 7070, 22195, 67830, 203130, 598806, 1743258, 5023711, 14356226, 40737383, 114904941, 322432215, 900707165, 2506181060, 6948996085, 19207795836, 52944197508, 145567226556, 399314965956, 1093107693133, 2986640695436
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Examples

			The a(5) = 1 and a(6) = 8 ordered trees:
  ((o)(o))  ((o)(o)o)
            ((o)(oo))
            ((o)o(o))
            ((oo)(o))
            (o(o)(o))
            (((o))(o))
            (((o)(o)))
            ((o)((o)))
		

Crossrefs

For leaves instead of height we have A000891, unordered A185650 aerated.
The unordered version is A358587, ranked by A358576.
For leaves instead of internal nodes we have A358590, unordered A358589.
A000108 counts ordered rooted trees, unordered A000081.
A001263 counts ordered rooted trees by nodes and leaves, unordered A055277.
A080936 counts ordered rooted trees by nodes and height, unordered A034781.
A090181 counts ordered rooted trees by nodes and internals, unord. A358575.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Count[#,[_],{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
  • PARI
    \\ Needs R(n,f) defined in A358590.
    seq(n) = {Vec(R(n, (h,p)->polcoef(subst(p, x, x/y), -h, y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Formula

Conjectures from Chai Wah Wu, Apr 14 2024: (Start)
a(n) = 9*a(n-1) - 32*a(n-2) + 58*a(n-3) - 58*a(n-4) + 32*a(n-5) - 9*a(n-6) + a(n-7) for n > 7.
G.f.: x^5*(-x^2 + x - 1)/((x - 1)^3*(x^2 - 3*x + 1)^2). (End)

Extensions

Terms a(16) and beyond from Andrew Howroyd, Jan 01 2023
Showing 1-10 of 14 results. Next