A358586 Number of ordered rooted trees with n nodes, at least half of which are leaves.
1, 1, 1, 4, 7, 31, 66, 302, 715, 3313, 8398, 39095, 104006, 484706, 1337220, 6227730, 17678835, 82204045, 238819350, 1108202513, 3282060210, 15195242478, 45741281820, 211271435479, 644952073662, 2971835602526, 9183676536076, 42217430993002, 131873975875180, 604834233372884
Offset: 1
Keywords
Examples
The a(1) = 1 through a(5) = 7 ordered trees: o (o) (oo) (ooo) (oooo) ((o)o) ((o)oo) ((oo)) ((oo)o) (o(o)) ((ooo)) (o(o)o) (o(oo)) (oo(o))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; Table[Length[Select[aot[n],Count[#,{},{0,Infinity}]>=Count[#,[_],{0,Infinity}]&]],{n,1,10}]
-
PARI
a(n) = if(n==1, 1, n--; (binomial(2*n,n)/(n+1) + if(n%2, binomial(n, (n-1)/2)^2 / n))/2) \\ Andrew Howroyd, Jan 13 2024
Formula
From Andrew Howroyd, Jan 13 2024: (Start)
a(n) = Sum_{k=1..floor(n/2)} A001263(n-1, k) for n >= 2.
a(2*n+1) = A000108(2*n)/2 for n >= 1. (End)
Extensions
a(16) onwards from Andrew Howroyd, Jan 13 2024