cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358587 Number of n-node rooted trees of height equal to the number of internal (non-leaf) nodes.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 14, 41, 111, 282, 688, 1627, 3761, 8540, 19122, 42333, 92851, 202078, 436916, 939359, 2009781, 4281696, 9087670, 19223905, 40544951, 85284194, 178956984, 374691171, 782936761, 1632982372, 3400182458, 7068800357, 14674471611, 30422685030
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2022

Keywords

Examples

			The a(5) = 1 through a(7) = 14 trees:
  ((o)(o))  ((o)(oo))   ((o)(ooo))
            (o(o)(o))   ((oo)(oo))
            (((o)(o)))  (o(o)(oo))
            ((o)((o)))  (oo(o)(o))
                        (((o))(oo))
                        (((o)(oo)))
                        ((o)((oo)))
                        ((o)(o(o)))
                        ((o(o)(o)))
                        (o((o)(o)))
                        (o(o)((o)))
                        ((((o)(o))))
                        (((o)((o))))
                        ((o)(((o))))
		

Crossrefs

For leaves instead of height we have A185650 aerated, ranked by A358578.
These trees are ranked by A358576.
The ordered version is A358588.
Square trees are counted by A358589, ranked by A358577, ordered A358590.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internal nodes, ordered A090181.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,[_],{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
  • PARI
    \\ Needs R(n,f) defined in A358589.
    seq(n) = {Vec(R(n, (h,p)->polcoef(subst(p, x, x/y), -h, y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Formula

Conjectures from Chai Wah Wu, Apr 15 2024: (Start)
a(n) = 5*a(n-1) - 7*a(n-2) - a(n-3) + 8*a(n-4) - 4*a(n-5) for n > 7.
G.f.: x^5*(x^2 - x + 1)/((x - 1)^2*(x + 1)*(2*x - 1)^2). (End)

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jan 01 2023