A358587 Number of n-node rooted trees of height equal to the number of internal (non-leaf) nodes.
0, 0, 0, 0, 1, 4, 14, 41, 111, 282, 688, 1627, 3761, 8540, 19122, 42333, 92851, 202078, 436916, 939359, 2009781, 4281696, 9087670, 19223905, 40544951, 85284194, 178956984, 374691171, 782936761, 1632982372, 3400182458, 7068800357, 14674471611, 30422685030
Offset: 1
Keywords
Examples
The a(5) = 1 through a(7) = 14 trees: ((o)(o)) ((o)(oo)) ((o)(ooo)) (o(o)(o)) ((oo)(oo)) (((o)(o))) (o(o)(oo)) ((o)((o))) (oo(o)(o)) (((o))(oo)) (((o)(oo))) ((o)((oo))) ((o)(o(o))) ((o(o)(o))) (o((o)(o))) (o(o)((o))) ((((o)(o)))) (((o)((o)))) ((o)(((o))))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; Table[Length[Select[art[n],Count[#,[_],{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
-
PARI
\\ Needs R(n,f) defined in A358589. seq(n) = {Vec(R(n, (h,p)->polcoef(subst(p, x, x/y), -h, y)), -n)} \\ Andrew Howroyd, Jan 01 2023
Formula
Conjectures from Chai Wah Wu, Apr 15 2024: (Start)
a(n) = 5*a(n-1) - 7*a(n-2) - a(n-3) + 8*a(n-4) - 4*a(n-5) for n > 7.
G.f.: x^5*(x^2 - x + 1)/((x - 1)^2*(x + 1)*(2*x - 1)^2). (End)
Extensions
Terms a(19) and beyond from Andrew Howroyd, Jan 01 2023