A358589 Number of square rooted trees with n nodes.
1, 0, 1, 0, 3, 2, 11, 17, 55, 107, 317, 720, 1938, 4803, 12707, 32311, 85168, 220879, 581112, 1522095, 4014186, 10568936, 27934075, 73826753, 195497427, 517927859, 1373858931, 3646158317, 9684878325, 25737819213, 68439951884, 182070121870, 484583900955, 1290213371950
Offset: 1
Keywords
Examples
The a(1) = 1 through a(7) = 11 trees: o . (oo) . ((ooo)) ((o)(oo)) (((oooo))) (o(oo)) (o(o)(o)) ((o(ooo))) (oo(o)) ((oo(oo))) ((ooo(o))) (o((ooo))) (o(o(oo))) (o(oo(o))) (oo((oo))) (oo(o(o))) (ooo((o))) ((o)(o)(o))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; Table[Length[Select[art[n],Count[#,{},{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
-
PARI
\\ R(n,f) enumerates trees by height(h), nodes(x) and leaves(y). R(n,f) = {my(A=O(x*x^n), Z=0); for(h=1, n, my(p = A); A = x*(y - 1 + exp( sum(i=1, n-1, 1/i * subst( subst( A + O(x*x^((n-1)\i)), x, x^i), y, y^i) ) )); Z += f(h, A-p)); Z} seq(n) = {Vec(R(n, (h,p)->polcoef(p,h,y)), -n)} \\ Andrew Howroyd, Jan 01 2023
Extensions
Terms a(19) and beyond from Andrew Howroyd, Jan 01 2023
Comments