cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358683 a(n) is the sum of all divisors of all positive integers k where A182986(n) < k <= prime(n), n >= 1.

Original entry on oeis.org

4, 4, 13, 20, 58, 42, 97, 59, 134, 259, 104, 342, 248, 140, 282, 498, 542, 230, 623, 438, 269, 722, 517, 854, 1256, 646, 320, 672, 390, 730, 2767, 815, 1348, 428, 2361, 524, 1564, 1553, 1002, 1729, 1670, 728, 2980, 702, 1227, 668, 4125, 4172, 1477, 790, 1500, 2246, 986, 3859, 2601, 2470, 2630
Offset: 1

Views

Author

Omar E. Pol, Nov 26 2022

Keywords

Comments

a(n) has a symmetric representation as shown in the example.

Examples

			a(1) = sigma(1) + sigma(2) = 1 + 3 = 4.
a(2) = sigma(3) = 4.
a(3) = sigma(4) + sigma(5) = 7 + 6 = 13.
a(4) = sigma(6) + sigma(7) = 12 + 8 = 20.
a(5) = sigma(8) + sigma(9) + sigma(10) + sigma(11) = 15 + 13 + 18 + 12 = 58.
a(6) = sigma(12) + sigma(13) = 28 + 14 = 42.
...
a(40) = sigma(168) + sigma(169) + sigma(170) + sigma(171) + sigma(172) + sigma(173) = 480 + 183 + 324 + 260 + 308 + 174 = 1729.
Illustration of initial terms using the Dyck paths described in A237593:
.
.  n  prime(n)  a(n)            Diagram
.                      _ _ _ _ _ _ _ _ _ _ _ _ _
.                     |   | |   |   |       |   |
.  1     2       4    |_ _|_|   |   |       |   |
.  2     3       4    |_ _|  _ _|   |       |   |
.                     |     |    _ _|       |   |
.  3     5      13    |_ _ _|  _|           |   |
.                     |       |        _ _ _|   |
.  4     7      20    |_ _ _ _|      _|    _ _ _|
.                     |            _|     |
.                     |           |      _|
.                     |           |  _ _|
.  5    11      58    |_ _ _ _ _ _| |
.                     |             |
.  6    13      42    |_ _ _ _ _ _ _|
.
The diagram of a(40) = 1729 is too large to include.
		

Crossrefs

Programs

  • Mathematica
    {Total@ DivisorSigma[1, Range[2]]}~Join~Array[Total@ DivisorSigma[1, Range[Prime[# - 1] + 1, Prime[#]]] &, 56, 2] (* Michael De Vlieger, Nov 29 2022 *)
  • PARI
    A358683(n) = sum(k=if(1==n,1,1+prime(n-1)),prime(n),sigma(k)); \\ Antti Karttunen, Nov 29 2022

Formula

a(n) = Sum_{k=1+A182986(n)..A182986(n+1)} A000203(k), n >= 1.