A358683 a(n) is the sum of all divisors of all positive integers k where A182986(n) < k <= prime(n), n >= 1.
4, 4, 13, 20, 58, 42, 97, 59, 134, 259, 104, 342, 248, 140, 282, 498, 542, 230, 623, 438, 269, 722, 517, 854, 1256, 646, 320, 672, 390, 730, 2767, 815, 1348, 428, 2361, 524, 1564, 1553, 1002, 1729, 1670, 728, 2980, 702, 1227, 668, 4125, 4172, 1477, 790, 1500, 2246, 986, 3859, 2601, 2470, 2630
Offset: 1
Keywords
Examples
a(1) = sigma(1) + sigma(2) = 1 + 3 = 4. a(2) = sigma(3) = 4. a(3) = sigma(4) + sigma(5) = 7 + 6 = 13. a(4) = sigma(6) + sigma(7) = 12 + 8 = 20. a(5) = sigma(8) + sigma(9) + sigma(10) + sigma(11) = 15 + 13 + 18 + 12 = 58. a(6) = sigma(12) + sigma(13) = 28 + 14 = 42. ... a(40) = sigma(168) + sigma(169) + sigma(170) + sigma(171) + sigma(172) + sigma(173) = 480 + 183 + 324 + 260 + 308 + 174 = 1729. Illustration of initial terms using the Dyck paths described in A237593: . . n prime(n) a(n) Diagram . _ _ _ _ _ _ _ _ _ _ _ _ _ . | | | | | | | . 1 2 4 |_ _|_| | | | | . 2 3 4 |_ _| _ _| | | | . | | _ _| | | . 3 5 13 |_ _ _| _| | | . | | _ _ _| | . 4 7 20 |_ _ _ _| _| _ _ _| . | _| | . | | _| . | | _ _| . 5 11 58 |_ _ _ _ _ _| | . | | . 6 13 42 |_ _ _ _ _ _ _| . The diagram of a(40) = 1729 is too large to include.
Crossrefs
Programs
-
Mathematica
{Total@ DivisorSigma[1, Range[2]]}~Join~Array[Total@ DivisorSigma[1, Range[Prime[# - 1] + 1, Prime[#]]] &, 56, 2] (* Michael De Vlieger, Nov 29 2022 *)
-
PARI
A358683(n) = sum(k=if(1==n,1,1+prime(n-1)),prime(n),sigma(k)); \\ Antti Karttunen, Nov 29 2022
Comments