A358722 Triangle read by rows. Number T(n, k) of partitions of the multiset [1, 1, 1, 1, 2, 2, 2, 2, ..., n, n, n, n] into k nonempty submultisets, for 1 <= k <= 4n.
1, 1, 2, 1, 1, 1, 12, 29, 32, 21, 10, 3, 1, 1, 62, 513, 1399, 1857, 1513, 855, 364, 119, 31, 6, 1, 1, 312, 8165, 55704, 155989, 231642, 215250, 139789, 68154, 26135, 8105, 2071, 435, 75, 10, 1, 1, 1562, 125121, 2076531, 12235869, 34100001, 53914814, 54898626, 39436580, 21332108, 9098469, 3160761, 914625, 223740, 46628, 8291, 1245, 155, 15, 1
Offset: 0
Examples
The triangular array starts: [0]: 1 [1]: 1, 2, 1, 1; [2]: 1, 12, 29, 32, 21, 10, 3, 1; [3]: 1, 62, 513, 1399, 1857, 1513, 855, 364, 119, 31, 6, 1;
References
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
Links
- Marko Riedel et al., Number of ways to partition a multiset into k non-empty multisets, Mathematics Stack Exchange.
- Marko Riedel, Maple code for sequence by plain enumeration, the Polya Enumeration Theorem, and Power Group Enumeration
Comments