cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358728 Number of n-node rooted trees whose node-height is less than their number of leaves.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 10, 30, 76, 219, 582, 1662, 4614, 13080, 36903, 105098, 298689, 852734, 2434660, 6964349, 19931147, 57100177, 163647811, 469290004, 1346225668, 3863239150, 11089085961, 31838349956, 91430943515, 262615909503, 754439588007, 2167711283560
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Node-height is the number of nodes in the longest path from root to leaf.

Examples

			The a(1) = 0 through a(7) = 10 trees:
  .  .  .  (ooo)  (oooo)  (ooooo)   (oooooo)
                          ((oooo))  ((ooooo))
                          (o(ooo))  (o(oooo))
                          (oo(oo))  (oo(ooo))
                          (ooo(o))  (ooo(oo))
                                    (oooo(o))
                                    ((o)(ooo))
                                    ((oo)(oo))
                                    (o(o)(oo))
                                    (oo(o)(o))
		

Crossrefs

These trees are ranked by A358727.
For internals instead of node-height we have A358581, ordered A358585.
The case of equality is A358589 (square trees), ranked by A358577.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Depth[#]-1
    				
  • PARI
    \\ Needs R(n,f) defined in A358589.
    seq(n) = {Vec(R(n, (h,p)->sum(j=h+1, n-1, polcoef(p,j,y))), -n)} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jan 01 2023