A358732 Number of labeled trees covering 2n nodes, half of which are leaves.
0, 12, 720, 109200, 31752000, 15186346560, 10852244282880, 10851787634688000, 14481281691676800000, 24881574582258352358400, 53525038934303849706393600, 140958354488116955062668595200, 446153762528143389466306560000000, 1671353230826683972965623004979200000
Offset: 1
Keywords
Examples
The a(2) = 12 trees: {{1,2},{1,3},{2,4}} {{1,2},{1,3},{3,4}} {{1,2},{1,4},{2,3}} {{1,2},{1,4},{3,4}} {{1,2},{2,3},{3,4}} {{1,2},{2,4},{3,4}} {{1,3},{1,4},{2,3}} {{1,3},{1,4},{2,4}} {{1,3},{2,3},{2,4}} {{1,3},{2,4},{3,4}} {{1,4},{2,3},{2,4}} {{1,4},{2,3},{3,4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Mathematica
a[n_]:=StirlingS2[2*n-2, n]*(2*n)!/n!; Array[a,14] (* Stefano Spezia, Aug 02 2024 *)
-
PARI
a(n) = stirling(2*n-2, n, 2)*(2*n)!/n! \\ Andrew Howroyd, Dec 30 2022
Formula
a(n) = A055314(2*n, n) = Stirling2(2*n-2, n)*(2*n)!/n!. - Andrew Howroyd, Dec 30 2022
Extensions
Terms a(6) and beyond from Andrew Howroyd, Dec 30 2022