A358831 Number of twice-partitions of n into partitions with weakly decreasing lengths.
1, 1, 3, 6, 14, 26, 56, 102, 205, 372, 708, 1260, 2345, 4100, 7388, 12819, 22603, 38658, 67108, 113465, 193876, 324980, 547640, 909044, 1516609, 2495023, 4118211, 6726997, 11002924, 17836022, 28948687, 46604803, 75074397, 120134298, 192188760, 305709858, 486140940
Offset: 0
Keywords
Examples
The a(1) = 1 through a(4) = 14 twice-partitions: (1) (2) (3) (4) (11) (21) (22) (1)(1) (111) (31) (2)(1) (211) (11)(1) (1111) (1)(1)(1) (2)(2) (3)(1) (11)(2) (21)(1) (11)(11) (111)(1) (2)(1)(1) (11)(1)(1) (1)(1)(1)(1)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Mathematica
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}]; Table[Length[Select[twiptn[n],GreaterEqual@@Length/@#&]],{n,0,10}]
-
PARI
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))} seq(n) = {my(g=Vec(P(n,y)-1), v=[1]); for(k=1, n, my(p=g[k], u=v); v=vector(k+1); v[1] = 1 + O(x*x^n); for(j=1, k, v[1+j] = (v[j] + if(j
Andrew Howroyd, Dec 31 2022
Extensions
Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022
Comments