A358835 Number of multiset partitions of integer partitions of n with constant block sizes and constant block sums.
1, 1, 3, 4, 8, 8, 17, 16, 31, 34, 54, 57, 108, 102, 166, 191, 294, 298, 504, 491, 803, 843, 1251, 1256, 2167, 1974, 3133, 3226, 4972, 4566, 8018, 6843, 11657, 11044, 17217, 15010, 28422, 21638, 38397, 35067, 58508, 44584, 91870, 63262, 125114, 106264, 177483
Offset: 0
Keywords
Examples
The a(1) = 1 through a(6) = 17 multiset partitions: {1} {2} {3} {4} {5} {6} {11} {12} {13} {14} {15} {1}{1} {111} {22} {23} {24} {1}{1}{1} {112} {113} {33} {1111} {122} {114} {2}{2} {1112} {123} {11}{11} {11111} {222} {1}{1}{1}{1} {1}{1}{1}{1}{1} {1113} {1122} {3}{3} {11112} {111111} {12}{12} {2}{2}{2} {111}{111} {11}{11}{11} {1}{1}{1}{1}{1}{1}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[If[n==0,1,Length[Union[Sort/@Join@@Table[Select[Tuples[IntegerPartitions[d],n/d],SameQ@@Length/@#&],{d,Divisors[n]}]]]],{n,0,20}]
-
PARI
P(n,y) = 1/prod(k=1, n, 1 - y*x^k + O(x*x^n)) seq(n) = {my(u=Vec(P(n,y)-1)); concat([1], vector(n, n, sumdiv(n, d, my(p=u[n/d]); sum(j=1, n/d, binomial(d + polcoef(p, j, y) - 1, d)))))} \\ Andrew Howroyd, Dec 31 2022
Formula
a(n) = Sum_{d|n} Sum_{j=1..n/d} binomial(d + A008284(n/d, j) - 1, d) for n > 0. - Andrew Howroyd, Dec 31 2022
Extensions
Terms a(41) and beyond from Andrew Howroyd, Dec 31 2022