A358891 Number of types of generalized symmetries in orthogonal diagonal Latin squares of order n in parastrophic slices.
6, 0, 0, 76, 44, 0, 145
Offset: 1
Examples
For order n=4 there are 5 different multisets L(P) with codes listed below in format "code - multiset": 1 - {1,1,1,1}, 2 - {1,1,2}, 3 - {1,3}, 4 - {2,2}, 5 - {4}. Diagonal Latin squares of order n=4 have a(4)=76 different types of generalized symmetries in parastrophic slices. Slice 1 (10 generalized symmetries), R=(x,y,v): 1. A=0123321010322301 (string representation of the square), Px=[0,1,2,3], Py=[0,1,2,3], Pv=[0,1,2,3] (trivial generalized symmetry), L(Px)={1,1,1,1,1}, L(Py)={1,1,1,1,1}, L(Pv)={1,1,1,1,1}, generalized symmetry type 1-(1,1,1). 2. A=0123321010322301, Px=[0,1,2,3], Py=[1,0,3,2], Pv=[1,0,3,2], L(Px)={1,1,1,1}, L(Py)={2,2}, L(Pv)={2,2}, generalized symmetry type 1-(1,4,4). ... 10. A=0123321010322301, Px=[1,2,3,0], Py=[2,3,1,0], Pv=[1,0,2,3], L(Px)={4}, L(Py)={4}, L(Pv)={1,1,2}, generalized symmetry type 1-(5,5,2). Slice 2 (10 generalized symmetries), R=(x,v,y): 11. A=0123321010322301, Px=[0,1,2,3], Py=[0,1,2,3], Pv=[0,1,2,3], L(Px)={1,1,1,1,1}, L(Py)={1,1,1,1,1}, L(Pv)={1,1,1,1,1}, generalized symmetry type 2-(1,1,1). 12. A=0123321010322301, Px=[0,1,2,3], Py=[1,0,3,2], Pv=[1,0,3,2], L(Px)={1,1,1,1}, L(Py)={2,2}, L(Pv)={2,2}, generalized symmetry type 2-(1,4,4). ... 20. A=0123321010322301, Px=[1,2,3,0], Py=[2,3,1,0], Pv=[1,0,2,3], L(Px)={4}, L(Py)={4}, L(Pv)={1,1,2}, generalized symmetry type 2-(5,5,2). Slice 3 (14 generalized symmetries). Slice 4 (14 generalized symmetries). Slice 5 (14 generalized symmetries). Slice 6 (14 generalized symmetries). Total 10+10+14+14+14+14=76 generalized symmetries in parastrophic slices.
Links
- Eduard I. Vatutin, About the number of types of generalized symmetries in diagonal Latin squares of orders 1-7.
- Eduard I. Vatutin, Proving lists (4, 5, 7, 8, 9, 10), Jul 31 2022
- Index entries for sequences related to Latin squares and rectangles.
Comments