A358905 Number of sequences of integer partitions with total sum n that are rectangular, meaning all lengths are equal.
1, 1, 3, 6, 13, 24, 49, 91, 179, 341, 664, 1280, 2503, 4872, 9557, 18750, 36927, 72800, 143880, 284660, 564093, 1118911, 2221834, 4415417, 8781591, 17476099, 34799199, 69327512, 138176461, 275503854, 549502119, 1096327380, 2187894634, 4367310138, 8719509111
Offset: 0
Keywords
Examples
The a(0) = 1 through a(4) = 13 sequences: () ((1)) ((2)) ((3)) ((4)) ((11)) ((21)) ((22)) ((1)(1)) ((111)) ((31)) ((1)(2)) ((211)) ((2)(1)) ((1111)) ((1)(1)(1)) ((1)(3)) ((2)(2)) ((3)(1)) ((11)(11)) ((1)(1)(2)) ((1)(2)(1)) ((2)(1)(1)) ((1)(1)(1)(1))
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}]; Table[Length[Select[ptnseq[n],SameQ@@Length/@#&]],{n,0,10}]
-
PARI
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))} seq(n) = {my(g=P(n,y)); Vec(1 + sum(k=1, n, 1/(1 - polcoef(g, k, y)) - 1))} \\ Andrew Howroyd, Dec 31 2022
Formula
G.f.: 1 + Sum_{k>=1} (1/(1 - [y^k]P(x,y)) - 1) where P(x,y) = 1/Product_{k>=1} (1 - y*x^k). - Andrew Howroyd, Dec 31 2022
Extensions
Terms a(16) and beyond from Andrew Howroyd, Dec 31 2022