A358911 Number of integer compositions of n whose parts all have the same number of prime factors, counted with multiplicity.
1, 1, 2, 2, 3, 4, 4, 7, 9, 12, 20, 21, 39, 49, 79, 109, 161, 236, 345, 512, 752, 1092, 1628, 2376, 3537, 5171, 7650, 11266, 16634, 24537, 36173, 53377, 78791, 116224, 171598, 253109, 373715, 551434, 814066, 1201466, 1773425, 2617744, 3864050, 5703840, 8419699
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 9 compositions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (23) (33) (25) (35) (1111) (32) (222) (52) (44) (11111) (111111) (223) (53) (232) (233) (322) (323) (1111111) (332) (2222) (11111111)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4000 (first 101 terms from Lucas A. Brown)
- Lucas A. Brown, Python program.
Programs
-
Maple
b:= proc(n, i) option remember; uses numtheory; `if`(n=0, 1, add( (t-> `if`(i<0 or i=t, b(n-j, t), 0))(bigomega(j)), j=1..n)) end: a:= n-> b(n, -1): seq(a(n), n=0..44); # Alois P. Heinz, Feb 12 2024
-
Mathematica
Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],SameQ@@PrimeOmega/@#&]],{n,0,10}]
Extensions
a(21) and beyond from Lucas A. Brown, Dec 15 2022