cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358913 Number of finite sequences of distinct sets with total sum n.

Original entry on oeis.org

1, 1, 1, 4, 6, 11, 28, 45, 86, 172, 344, 608, 1135, 2206, 4006, 7689, 13748, 25502, 47406, 86838, 157560, 286642, 522089, 941356, 1718622, 3079218, 5525805, 9902996, 17788396, 31742616, 56694704, 100720516, 178468026, 317019140, 560079704, 991061957
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 11 sequences of sets:
  ({1})  ({2})  ({3})      ({4})        ({5})
                ({1,2})    ({1,3})      ({1,4})
                ({1},{2})  ({1},{3})    ({2,3})
                ({2},{1})  ({3},{1})    ({1},{4})
                           ({1},{1,2})  ({2},{3})
                           ({1,2},{1})  ({3},{2})
                                        ({4},{1})
                                        ({1},{1,3})
                                        ({1,2},{2})
                                        ({1,3},{1})
                                        ({2},{1,2})
		

Crossrefs

The unordered version is A050342, non-strict A261049.
The case of strictly decreasing sums is A279785.
This is the distinct case of A304969.
The case of distinct sums is A336343, constant sums A279791.
This is the case of A358906 with strict partitions.
The version for compositions instead of strict partitions is A358907.
The case of twice-partitions is A358914.
A001970 counts multiset partitions of integer partitions.
A055887 counts sequences of partitions.
A063834 counts twice-partitions.
A330462 counts set systems by total sum and length.
A358830 counts twice-partitions with distinct lengths.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(binomial(g(i), j)*b(n-i*j, i-1, p+j), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, Feb 13 2024
  • Mathematica
    ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
    Table[Length[Select[ptnseq[n],UnsameQ@@#&&And@@UnsameQ@@@#&]],{n,0,10}]

Formula

a(n) = Sum_{k} A330462(n,k) * k!.