A358914 Number of twice-partitions of n into distinct strict partitions.
1, 1, 1, 3, 4, 7, 13, 20, 32, 51, 83, 130, 206, 320, 496, 759, 1171, 1786, 2714, 4104, 6193, 9286, 13920, 20737, 30865, 45721, 67632, 99683, 146604, 214865, 314782, 459136, 668867, 972425, 1410458, 2040894, 2950839, 4253713, 6123836, 8801349, 12627079
Offset: 0
Keywords
Examples
The a(1) = 1 through a(6) = 13 twice-partitions: ((1)) ((2)) ((3)) ((4)) ((5)) ((6)) ((21)) ((31)) ((32)) ((42)) ((2)(1)) ((3)(1)) ((41)) ((51)) ((21)(1)) ((3)(2)) ((321)) ((4)(1)) ((4)(2)) ((21)(2)) ((5)(1)) ((31)(1)) ((21)(3)) ((31)(2)) ((3)(21)) ((32)(1)) ((41)(1)) ((3)(2)(1)) ((21)(2)(1))
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
Crossrefs
This is the distinct case of A270995.
The case of strictly decreasing sums is A279785.
The case of constant sums is A279791.
For distinct instead of weakly decreasing sums we have A336343.
This is the twice-partition case of A358913.
A001970 counts multiset partitions of integer partitions.
A055887 counts sequences of partitions.
A063834 counts twice-partitions.
A330462 counts set systems by total sum and length.
A358830 counts twice-partitions with distinct lengths.
Programs
-
Mathematica
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}]; Table[Length[Select[twiptn[n],UnsameQ@@#&&And@@UnsameQ@@@#&]],{n,0,10}]
-
PARI
seq(n,k)={my(u=Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))-1)); Vec(prod(k=1, n, my(c=u[k]); sum(j=0, min(c,n\k), x^(j*k)*c!/(c-j)!, O(x*x^n))))} \\ Andrew Howroyd, Dec 31 2022
Extensions
Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022
Comments