A358929 a(n) is the smallest centered triangular number with exactly n prime factors (counted with multiplicity).
1, 19, 4, 316, 136, 760, 64, 4960, 22144, 103360, 27136, 5492224, 1186816, 41414656, 271212544, 559980544, 1334788096, 12943360, 7032930304, 527049293824, 158186536960, 1096295120896, 7871801589760, 154690378792960, 13071965224960, 56262393856, 964655941943296
Offset: 0
Keywords
Examples
a(4) = 136, because 136 is a centered triangular number with 4 prime factors (counted with multiplicity) {2, 2, 2, 17} and this is the smallest such number.
Links
- Eric Weisstein's World of Mathematics, Centered Triangular Number
- Eric Weisstein's World of Mathematics, Prime Factor
Programs
-
Mathematica
c[k_] := (3*k^2 + 3*k + 2)/2; a[n_] := Module[{k = 0, ck}, While[PrimeOmega[ck = c[k]] != n, k++]; ck]; Array[a, 18, 0] (* Amiram Eldar, Dec 09 2022 *)
-
PARI
a(n) = if(n==0, return(1)); for(k=1, oo, my(t=3*k*(k+1)/2 + 1); if(bigomega(t) == n, return(t))); \\ Daniel Suteu, Dec 10 2022
Extensions
a(22)-a(26) from Daniel Suteu, Dec 10 2022