cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A358926 a(n) is the smallest centered n-gonal number with exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

316, 1625, 456, 3964051, 21568, 6561, 346528, 3588955448828761, 1684992, 210804461608463437, 36865024, 835904150390625, 2052407296
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 06 2022

Keywords

Examples

			a(3) = 316, because 316 is a centered triangular number with 3 prime factors (counted with multiplicity) {2, 2, 79} and this is the smallest such number.
		

Crossrefs

Programs

  • Mathematica
    c[n_, k_] := n*k*(k + 1)/2 + 1; a[n_] := Module[{k = 1, ck}, While[PrimeOmega[ck = c[n, k]] != n, k++]; ck]; Array[a, 7, 3] (* Amiram Eldar, Dec 09 2022 *)
  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=((n*k*(k+1))/2+1)); if(bigomega(t) == n, return(t))); \\ Daniel Suteu, Dec 09 2022

Extensions

a(10)-a(15) from Daniel Suteu, Dec 09 2022

A358928 a(n) is the smallest centered triangular number with exactly n distinct prime factors.

Original entry on oeis.org

1, 4, 10, 460, 9010, 772210, 20120860, 1553569960, 85507715710, 14932196985010, 1033664429333260, 197628216951078460, 21266854897681220860, 7423007155473283614010, 3108276166302017120182510, 851452464506763307285599610, 32749388246772812069108696710
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 06 2022

Keywords

Comments

a(n) cannot be divisible by a bunch of primes like 3, 7, 11, 13, ... as (3*k^2 + 3*k + 2)/2 is never a multiple of any of them. - David A. Corneth, Dec 12 2022
a(16) <= 1421044357661885128003268103460. - David A. Corneth, Dec 14 2022

Examples

			a(4) = 9010, because 9010 is a centered triangular number with 4 distinct prime factors {2, 5, 17, 53} and this is the smallest such number.
		

Crossrefs

Programs

  • Mathematica
    c[k_] := (3*k^2 + 3*k + 2)/2; a[n_] := Module[{k = 0, ck}, While[PrimeNu[ck = c[k]] != n, k++]; ck]; Array[a, 9, 0] (* Amiram Eldar, Dec 09 2022 *)
  • PARI
    a(n) = for(k=0, oo, my(t=3*k*(k+1)/2 + 1); if(omega(t) == n, return(t))); \\ Daniel Suteu, Dec 10 2022

Extensions

a(9)-a(11) from Daniel Suteu, Dec 10 2022
a(12)-a(13) from David A. Corneth, Dec 12 2022
a(13) corrected by Daniel Suteu, Dec 13 2022
a(14)-a(15) from David A. Corneth, Dec 14 2022
a(16) from Daniel Suteu, Dec 14 2022
a(15) corrected by Daniel Suteu, Dec 15 2022

A359235 a(n) is the smallest centered square number with exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

1, 5, 25, 925, 1625, 47125, 2115625, 4330625, 83760625, 1049140625, 6098828125, 224991015625, 3735483578125, 329495166015625, 8193863401953125, 7604781494140625, 216431299462890625, 148146624615478515625, 25926420587158203125, 11071085186929931640625
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 22 2022

Keywords

Comments

a(14) <= 33811910869140625, a(15) <= 7604781494140625, a(16) <= 216431299462890625. - Robert Israel, Dec 22 2022

Examples

			a(4) = 1625, because 1625 is a centered square number with 4 prime factors (counted with multiplicity) {5, 5, 5, 13} and this is the smallest such number.
		

Crossrefs

Programs

  • Maple
    cs:= n -> 2*n*(n+1)+1:
    V:= Vector(12): count:= 0:
    for n from 1 while count < 12 do
      v:= cs(n);
    w:= numtheory:-bigomega(v);
    if V[w] = 0 then V[w]:= v; count:= count+1 fi
    od:
    convert(V,list); # Robert Israel, Dec 22 2022
  • PARI
    bigomega_centered_square_numbers(A, B, n) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p, ceil(A/m)), B\m, if(q%4==1, my(t=m*q); if(issquare(2*t-1), listput(list, t)))), forprime(q=p, sqrtnint(B\m, n), if(q%4==1, my(t=m*q); if(ceil(A/t) <= B\t, list=concat(list, f(t, q, n-1)))))); list); vecsort(Vec(f(1, 2, n)));
    a(n) = if(n==0, return(1)); my(x=2^n, y=2*x); while(1, my(v=bigomega_centered_square_numbers(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Dec 29 2022

Extensions

a(11)-a(13) from Robert Israel, Dec 22 2022
a(14)-a(19) from Daniel Suteu, Dec 29 2022
Showing 1-3 of 3 results.