A358934 a(n) = Fibonacci(n+1)^5 - Fibonacci(n-1)^5.
0, 1, 31, 242, 3093, 32525, 368168, 4051333, 45064131, 499200274, 5538624025, 61414079849, 681135796944, 7553728681433, 83772910243607, 929052526388050, 10303364319347757, 114266002348885717, 1267229634537217144, 14053790947047408701, 155858934437282250075
Offset: 0
Examples
Case n=1 is a star graph with five branches and one edge cover (all edges). * * \ / *__C__* | * For n=2, there are 31 edge covers of the graph obtained by gluing five P_3 paths at one single vertex. Each of the pendant edges of the P_3's have to be in the edge cover for the pendants to be incident with an edge. The middle vertices are then automatically incident with at least one edge. There remains the center vertex. We then need at least one of the remaining five edges to be in the subset, giving us 2^5-1 choices. *__ * *__* \ / *__*__C__*__* | *__*
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..957
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- Index entries for linear recurrences with constant coefficients, signature (8,40,-60,-40,8,1).
Programs
-
Mathematica
LinearRecurrence[{8, 40, -60, -40, 8, 1}, {0, 1, 31, 242, 3093, 32525}, 20] (* Amiram Eldar, Dec 07 2022 *) Join[{0},#[[3]]-#[[1]]&/@Partition[Fibonacci[Range[0,30]]^5,3,1]] (* Harvey P. Dale, Aug 05 2024 *)
-
Python
from sympy import fibonacci def a(n): return fibonacci(n+1)**5-fibonacci(n-1)**5
-
Python
from gmpy2 import fib2 def A358934(n): return sum(f:=fib2(n))**5-f[1]**5 # Chai Wah Wu, Jan 04 2023
Formula
From Stefano Spezia, Dec 07 2022: (Start)
G.f.: x*(1 + 23*x - 46*x^2 - 23*x^3 + x^4)/((1 + 4*x - x^2)*(1 - x - x^2)*(1 - 11*x - x^2)).
a(n) = 8*a(n-1) + 40*a(n-2) - 60*a(n-3) - 40*a(n-4) + 8*a(n-5) + a(n-6) for n > 5. (End)
Comments