cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358937 Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} x^n * (x^(2*n) - A(x))^n.

Original entry on oeis.org

1, 1, 3, 6, 13, 31, 76, 192, 504, 1351, 3668, 10082, 27991, 78335, 220778, 626141, 1785593, 5117179, 14729826, 42568767, 123465517, 359268141, 1048541699, 3068583485, 9002849260, 26474484680, 78019959584, 230381635121, 681544367457, 2019718168994, 5995000501189
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^(2*n+1))^n, which holds formally for all y.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 13*x^4 + 31*x^5 + 76*x^6 + 192*x^7 + 504*x^8 + 1351*x^9 + 3668*x^10 + 10082*x^11 + 27991*x^12 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
    A[#A] = polcoeff( sum(n=-#A,#A, x^n * (x^(2*n) - Ser(A))^n ), #A) );A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 1 = Sum_{n=-oo..+oo} x^n * (x^(2*n) - A(x))^n.
(2) 1 = Sum_{n=-oo..+oo} x^(n*(2*n-1)) / (1 - x^(2*n)*A(x))^n.
(3) 0 = Sum_{n=-oo..+oo} (-1)^n * x^n * (x^(2*n+1) - A(x))^n (trivial).
(4) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n*(n-1)) / (1 - x^(2*n)*A(x))^n (trivial).