cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358981 Decimal expansion of Pi/3 - sqrt(3)/4.

Original entry on oeis.org

6, 1, 4, 1, 8, 4, 8, 4, 9, 3, 0, 4, 3, 7, 8, 4, 2, 2, 7, 7, 2, 3, 5, 2, 8, 7, 5, 7, 1, 6, 6, 9, 9, 5, 3, 6, 3, 3, 0, 0, 2, 1, 8, 1, 9, 6, 7, 2, 4, 4, 0, 1, 1, 6, 6, 4, 4, 3, 6, 3, 1, 1, 9, 2, 3, 9, 6, 2, 2, 2, 1, 4, 5, 3, 4, 8, 6, 9, 6, 5, 6, 9, 3, 9, 0, 5, 8, 3, 9, 5, 0, 9, 1, 3, 9, 3, 5, 4, 5, 4
Offset: 0

Views

Author

Michal Paulovic, Dec 08 2022

Keywords

Comments

The constant is the area of a circular segment bounded by an arc of 2*Pi/3 radians (120 degrees) of a unit circle and by a chord of length sqrt(3). Three such segments result when an equilateral triangle with side length sqrt(3) is circumscribed by a unit circle. The area of each segment is:
A = (R^2 / 2) * (theta - sin(theta))
A = (1^2 / 2) * (2*Pi/3 - sin(2*Pi/3))
A = (1 / 2) * (2*Pi/3 - sqrt(3)/2)
A = Pi/3 - sqrt(3)/4 = (Pi - 3*sqrt(3)/4) / 3 = 0.61418484...
where Pi (A000796) is the area of the circle, and 3*sqrt(3)/4 (A104954) is the area of the inscribed equilateral triangle.
The sagitta (height) of the circular segment is:
h = R * (1 - cos(theta/2))
h = 1 * (1 - cos(Pi/3))
h = 1 - 1/2 = 0.5 (A020761)

Examples

			0.6141848493043784...
		

Crossrefs

Programs

  • Maple
    evalf(Pi/3-sqrt(3)/4);
  • Mathematica
    RealDigits[Pi/3 - Sqrt[3]/4, 10, 100][[1]]
  • PARI
    Pi/3 - sqrt(3)/4

Formula

Equals A019670 - A120011. - Omar E. Pol, Dec 08 2022
Equals A093731 / 2. - Michal Paulovic, Mar 08 2024