A358984 The number of n-digit numbers k such that k + digit reversal of k (A056964) is a square.
3, 8, 19, 0, 169, 896, 1496, 3334, 21789, 79403, 239439, 651236, 1670022, 3015650, 27292097, 55608749, 234846164, 366081231, 2594727780, 6395506991
Offset: 1
Examples
a(1) = 3 because there are 3 single-digit numbers: 0, 2, 8 such that b + b = m^2, for example, 8 + 8 = 16 = 4^2; a(2) = 8 because there are 8 two-digit numbers: 29, 38, 47, 56, 65, 74, 83, 92 such that bc + cb = m^2, for example, 29 + 92 = 121 = 11^2.
Links
Programs
-
Mathematica
a[n_]:=Length[Select[Table[k, {k, 10^(n-1),10^n-1}],IntegerQ[Sqrt[#+FromDigits[Reverse[IntegerDigits[#]]]]]&]]; Array[a,10] (* Stefano Spezia, Dec 09 2022 *)
-
Python
from math import isqrt def s(n): return isqrt(n)**2 == n def c(n): return s(n + int(str(n)[::-1])) def a(n): return 3 if n == 1 else sum(1 for k in range(10**(n-1), 10**n) if c(k)) print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Dec 08 2022
Extensions
a(9)-a(10) from Michael S. Branicky, Dec 08 2022
a(11)-a(20) from Talmon Silver, Dec 25 2022
Comments