A359038 a(n) = Sum_{d|n} tau(d^7), where tau(n) = number of divisors of n, cf. A000005.
1, 9, 9, 24, 9, 81, 9, 46, 24, 81, 9, 216, 9, 81, 81, 75, 9, 216, 9, 216, 81, 81, 9, 414, 24, 81, 46, 216, 9, 729, 9, 111, 81, 81, 81, 576, 9, 81, 81, 414, 9, 729, 9, 216, 216, 81, 9, 675, 24, 216, 81, 216, 9, 414, 81, 414, 81, 81, 9, 1944, 9, 81, 216, 154, 81, 729, 9, 216, 81, 729, 9
Offset: 1
Programs
-
Mathematica
Array[DivisorSum[#, DivisorSigma[0, #^7] &] &, 120] (* Michael De Vlieger, Dec 13 2022 *) f[p_, e_] := 7*e^2/2 + 9*e/2 + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 14 2022 *)
-
PARI
a(n) = sumdiv(n, d, numdiv(d^7));
-
PARI
a(n) = sumdiv(n, d, numdiv(n*d^5));
-
PARI
a(n) = sumdiv(n, d, numdiv(n^2*d^3));
-
PARI
a(n) = sumdiv(n, d, numdiv(n^3*d));
-
PARI
a(n) = sumdiv(n, d, numdiv(n^4/d));
-
PARI
my(N=80, x='x+O('x^N)); Vec(sum(k=1, N, numdiv(k^7)*x^k/(1-x^k)))
-
Python
from math import prod from sympy import factorint def A359038(n): return prod((e+1)*(7*e+2)>>1 for e in factorint(n).values()) # Chai Wah Wu, Dec 13 2022
Formula
a(n) = Sum_{d|n} tau(n * d^5) = Sum_{d|n} tau(n^2 * d^3) = Sum_{d|n} tau(n^3 * d) = Sum_{d|n} tau(n^4 / d).
G.f.: Sum_{k>=1} tau(k^7) * x^k/(1 - x^k).
Multiplicative with a(p^e) = 7*e^2/2 + 9*e/2 + 1. - Amiram Eldar, Dec 14 2022