cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359039 Number of Wachs permutations of size n.

Original entry on oeis.org

1, 1, 2, 4, 8, 24, 48, 192, 384, 1920, 3840, 23040, 46080, 322560, 645120, 5160960, 10321920, 92897280, 185794560, 1857945600, 3715891200, 40874803200, 81749606400, 980995276800, 1961990553600, 25505877196800, 51011754393600, 714164561510400, 1428329123020800
Offset: 0

Views

Author

Per W. Alexandersson, Dec 13 2022

Keywords

Comments

A Wachs permutation pi is a permutation of [n] such that |pi^{-1}(i) - pi^{-1}(i*)| <= 1, for all 1 <= i <= n-1, where i* is defined as i-1 if i is even, i+1 if i is odd and i+1 <= n, and n otherwise.

Examples

			For n=4, a(n)=8, since we have the 8 Wachs permutations 1234, 1243, 2134, 2143, 3412, 3421, 4312, 4321.
		

Crossrefs

Programs

  • Maple
    A359039 := proc(n)
        local m ;
        m := floor(n/2) ;
        if type(n,'even') then
            m!*2^m ;
        else
            (m+1)!*2^m ;
        end if;
    end proc: # R. J. Mathar, Jul 17 2023
    # second Maple program:
    a:= n-> ceil(n/2)!*2^floor(n/2):
    seq(a(n), n=0..28);  # Alois P. Heinz, Dec 21 2023
  • Mathematica
    a[n_]:=If[EvenQ[n], (n/2)! 2^(n/2), ((n + 1)/2)!*2^((n - 1)/2)]

Formula

If n=2m, then a(n) = m!*2^m, if n=2m+1, then a(n) = (m+1)!*2^m.
a(n) = A081123(n+1)*A016116(n). - Alois P. Heinz, Jan 23 2023
Sum_{n>=0} 1/a(n) = 3*sqrt(e) - 2. - Amiram Eldar, Jan 25 2023
D-finite with recurrence a(n) +2*a(n-1) +(-n-1)*a(n-2) +2*(-n+1)*a(n-3)=0. - R. J. Mathar, Jul 17 2023