A359041 Number of finite sets of integer partitions with all equal sums and total sum n.
1, 1, 2, 3, 6, 7, 14, 15, 32, 31, 63, 56, 142, 101, 240, 211, 467, 297, 985, 490, 1524, 1247, 2542, 1255, 6371, 1979, 7486, 7070, 14128, 4565, 32953, 6842, 42229, 37863, 56266, 17887, 192914, 21637, 145820, 197835, 371853, 44583, 772740, 63261, 943966, 1124840
Offset: 0
Keywords
Examples
The a(1) = 1 through a(6) = 14 sets: {(1)} {(2)} {(3)} {(4)} {(5)} {(6)} {(11)} {(21)} {(22)} {(32)} {(33)} {(111)} {(31)} {(41)} {(42)} {(211)} {(221)} {(51)} {(1111)} {(311)} {(222)} {(2),(11)} {(2111)} {(321)} {(11111)} {(411)} {(2211)} {(3111)} {(21111)} {(111111)} {(3),(21)} {(3),(111)} {(21),(111)}
Crossrefs
Programs
-
Mathematica
Table[If[n==0,1,Sum[Binomial[PartitionsP[d],n/d],{d,Divisors[n]}]],{n,0,50}]
-
PARI
a(n) = if (n, sumdiv(n, d, binomial(numbpart(d), n/d)), 1); \\ Michel Marcus, Dec 14 2022
Formula
a(n) = Sum_{d|n} binomial(A000041(d),n/d).