cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A359053 a(n) = Sum_{d|n} sigma_d(d)^(n/d).

Original entry on oeis.org

1, 6, 29, 299, 3127, 48360, 823545, 16918164, 387462126, 10019541652, 285311670613, 8920567022545, 302875106592255, 11113363273445312, 437893951476881153, 18447309245488431653, 827240261886336764179, 39346708488214110663954, 1978419655660313589123981
Offset: 1

Views

Author

Seiichi Manyama, Dec 14 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[#, #]^(n/#) &]; Array[a, 19] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d, d)^(n/d));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, k)*x^k/(1-sigma(k, k)*x^k)))

Formula

G.f.: Sum_{k >= 1} sigma_k(k) * x^k/(1 - sigma_k(k) * x^k).
If p is prime, a(p) = 2 + p^p.

A359054 a(n) = Sum_{d|n} sigma_d(d)^d.

Original entry on oeis.org

1, 26, 21953, 5554571867, 298500366308609377, 11413459460309090640625021978, 256925761343390078522337875137209684721665, 6476754651706496208416137876625690606552226172163824554588
Offset: 1

Views

Author

Seiichi Manyama, Dec 14 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[#, #]^# &]; Array[a, 8] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d, d)^d);
    
  • PARI
    my(N=10, x='x+O('x^N)); Vec(sum(k=1, N, (sigma(k, k)*x)^k/(1-x^k)))

Formula

G.f.: Sum_{k >= 1} (sigma_k(k) * x)^k/(1 - x^k).
Showing 1-2 of 2 results.