cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A359052 a(n) = Sum_{d|n} sigma_d(d)^n.

Original entry on oeis.org

1, 26, 21953, 5554572467, 298500366308609377, 11413459460309090641106905930, 256925761343390078522337875137209684721665, 6476754651706496208416137876625690606583079440495100502628
Offset: 1

Views

Author

Seiichi Manyama, Dec 14 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[#, #]^n &]; Array[a, 8] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d, d)^n);
    
  • PARI
    my(N=10, x='x+O('x^N)); Vec(sum(k=1, N, (sigma(k, k)*x)^k/(1-(sigma(k, k)*x)^k)))

Formula

G.f.: Sum_{k >= 1} (sigma_k(k) * x)^k/(1 - (sigma_k(k) * x)^k).

A359054 a(n) = Sum_{d|n} sigma_d(d)^d.

Original entry on oeis.org

1, 26, 21953, 5554571867, 298500366308609377, 11413459460309090640625021978, 256925761343390078522337875137209684721665, 6476754651706496208416137876625690606552226172163824554588
Offset: 1

Views

Author

Seiichi Manyama, Dec 14 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[#, #]^# &]; Array[a, 8] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d, d)^d);
    
  • PARI
    my(N=10, x='x+O('x^N)); Vec(sum(k=1, N, (sigma(k, k)*x)^k/(1-x^k)))

Formula

G.f.: Sum_{k >= 1} (sigma_k(k) * x)^k/(1 - x^k).
Showing 1-2 of 2 results.