A359143
The sum-and-erase sequence starting at 11: a(0) = 11; for n>=1, let m = a(n-1), and if m < 0, change m to an improper decimal "number" by replacing the minus sign by a single leading zero; then a(n) = A359142(m).
Original entry on oeis.org
11, 112, 1124, 11248, 2486, 4860, 486018, 48601827, 4860182736, 8601827365, 860182736546, 86018273654656, 8601827365465667, 601273654656670, -1273545704, -127354570438, -12735457043849, -1273545704384962, 1273545743849627, 127354574384962777, 273545743849627779
Offset: 0
- Eric Angelini, Does this iteration end? (Sum and erase), Personal blog "Cinquante Signes", blogspot.com, Jul 26 2022.
- Eric Angelini, Does this iteration end? (Sum and erase), Personal blog "Cinquante Signes", blogspot.com, Jul 26 2022. [Cached copy, pdf file, with permission]
- Michael S. Branicky, Python program for the sum-and-erase sequence
- Jean-Paul Delahaye, Des suites à la dynamique insaisissable, Pour la Science #549, July 2023, pp. 80-85. (Link requires a subscription.)
- Hans Havermann, Table of n, a(n) for n = 0..1399141 [Beware, this is a 106.5 MB file.]
- Hans Havermann, Cycles in Éric Angelini's sum-and-erase, Glad Hobo Express Blog, Jul 28 2022
- Hans Havermann, A cycle of length 49 [Astonishing! - _N. J. A. Sloane_, Jan 31 2023]
- N. J. A. Sloane, New Gilbreath Conjectures, Sum and Erase, Dissecting Polygons, and Other New Sequences, Doron Zeilberger's Exper. Math. Seminar, Rutgers, Sep 14 2023: Video, Slides, Updates. (Mentions this sequence.)
-
a[1] = {1, 1}; nn = 21; Do[If[FreeQ[#3, #2], Set[k, #1~Join~#3], Set[k, #1~Join~#3]; Set[k, DeleteCases[#1~Join~#3, #2]]] & @@ {#, First[#], IntegerDigits@ Total[#]} &[a[n - 1]]; Set[a[n], k], {n, 2, nn}]; Array[(1 - 2 Boole[First[#] == 0])*FromDigits@ # &@ a[#] &, nn] (* Michael De Vlieger, Mar 16 2023 *)
A359144
Indices k such that A359142(k) is negative.
Original entry on oeis.org
109, 1009, 1018, 1019, 1027, 1028, 1029, 1036, 1037, 1038, 1039, 1045, 1046, 1047, 1048, 1049, 1054, 1055, 1056, 1057, 1058, 1059, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1081, 1082, 1083, 1084, 1085, 1086, 1087
Offset: 1
-
A359144Q[n_]:=Module[{d=IntegerDigits[n],s,u},If[MemberQ[s=IntegerDigits[Total[d]],First[u=Join[d,s]]],u=DeleteCases[u,First[u]]];FromDigits[u]>0&&First[u]==0];Select[Range[2000],A359144Q] (* Paolo Xausa, Oct 11 2023 *)
A361350
A variant of A359143 which includes the intermediate terms before digits are deleted (see Comments for precise definition).
Original entry on oeis.org
11, 112, 1124, 11248, 1124816, 2486, 248620, 4860, 486018, 48601827, 4860182736, 486018273645, 8601827365, 860182736546, 86018273654656, 8601827365465667, 860182736546566780, 601273654656670, 60127365465667064, -1273545704, -127354570438, -12735457043849, -1273545704384962, -127354570438496270, 1273545743849627, 127354574384962777, 12735457438496277791, 273545743849627779
Offset: 0
The digit strings for the initial terms are:
11,
112,
1124,
11248,
1124816,
2486,
248620,
4860,
486018,
48601827,
4860182736,
486018273645,
8601827365,
860182736546,
86018273654656,
8601827365465667,
860182736546566780,
601273654656670,
60127365465667064,
01273545704,
0127354570438,
012735457043849,
01273545704384962,
0127354570438496270,
1273545743849627,
127354574384962777,
12735457438496277791,
273545743849627779, ...
The sequence itself is obtained by replacing the leading zeros by minus signs.
For example, after the term 601273654656670, we first append its digit-sum 64, getting 60127365465667064. Since the leading digit 6 is present in 64, we cancel all the 6's, getting 01273545704. The corresponding term in the sequence is -1273545704.
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Michael De Vlieger, Scatterplot of log_10(abs(a(n))), n = 1..10^3, showing negative terms in red.
- Michael De Vlieger, Scatterplot of log_10(abs(a(n))), n = 1..10^4, showing negative terms in red.
- Michael De Vlieger, Scatterplot of log_10(abs(a(n))), showing all terms, with negative terms in red.
-
a[1] = {1, 1}; nn = 28;
Do[Which[ListQ[m], k = m; Clear[m],
FreeQ[#3, #2], Set[k, #1~Join~#3],
True, Set[k, #1~Join~#3];
Set[m, DeleteCases[#1~Join~#3, #2]]] & @@
{#, First[#], IntegerDigits@ Total[#]} &[a[n - 1]];
Set[a[n], k], {n, 2, nn}];
Array[(1 - 2 Boole[First[#] == 0])*FromDigits@ # &@ a[#] &, nn] (* Michael De Vlieger, Mar 16 2023 *)
More than the usual number of terms are shown in order to clarify the differences from
A359143.
A361501
A variant of A359143 in which all copies of a digit d are erased only when d is both the leading digit and the final digit of (a(n) concatenated with sum of digits of a(n)).
Original entry on oeis.org
11, 112, 1124, 11248, 1124816, 112481623, 11248162328, 1124816232838, 112481623283849, 11248162328384962, 1124816232838496270, 112481623283849627077, 2486232838496270779, 248623283849627077997, 248623283849627077997113, 248623283849627077997113118, 248623283849627077997113118128
Offset: 0
a(11) = 112481623283849627077, which has digit-sum 91.
So k = 11248162328384962707791 both begins and ends with 1.
Erasing all the 1's from k gives a(12) = 2486232838496270779.
-
a[1] = {1, 1}; nn = 17;
Do[If[And[#2 == Last[#3], n > 2],
Set[k, DeleteCases[#1~Join~#3, #2]],
Set[k, #1~Join~#3]] & @@
{#, First[#], IntegerDigits@ Total[#]} &[a[n - 1]];
Set[a[n], k], {n, 2, nn}];
Array[(1 - 2 Boole[First[#] == 0])*FromDigits[#] &@ a[#] &, nn] (* Michael De Vlieger, Mar 17 2023 *)
Showing 1-4 of 4 results.
Comments