cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A359211 a(n) = tau(3*n-1)/2, where tau(n) = number of divisors of n, cf. A000005.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 2, 2, 1, 3, 1, 3, 1, 4, 1, 2, 2, 3, 1, 2, 2, 5, 1, 2, 1, 3, 2, 3, 1, 4, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 1, 6, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 1, 5, 1, 4, 2, 3, 1, 2, 1, 6, 2, 2, 2, 3, 2, 2, 2, 6, 1, 4, 1, 3, 1, 3, 3, 4, 1, 2, 1, 6, 1, 4, 1
Offset: 1

Views

Author

Seiichi Manyama, Dec 21 2022

Keywords

Comments

Also number of divisors of 3*n-1 of form 3*k+1 (or 3*k+2).

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, 3*n-1]/2; Array[a, 100] (* Amiram Eldar, Dec 21 2022 *)
  • PARI
    a(n) = numdiv(3*n-1)/2;
    
  • PARI
    a(n) = sumdiv(3*n-1, d, d%3==1);
    
  • PARI
    a(n) = sumdiv(3*n-1, d, d%3==2);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(3*k-1))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(3*k-2))))

Formula

G.f.: Sum_{k>0} x^k/(1 - x^(3*k-1)).
G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(3*k-2)).
Sum_{k=1..n} a(k) = (log(n) + 2*gamma - 1 + 2*log(3))*n/3 + O(n^(1/3)*log(n)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 26 2022

A359239 Number of divisors of 3*n-2 of form 3*k+2.

Original entry on oeis.org

0, 1, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 4, 0, 2, 0, 2, 2, 2, 0, 3, 0, 4, 0, 2, 0, 2, 2, 4, 0, 2, 0, 4, 0, 2, 0, 4, 2, 2, 1, 2, 0, 4, 0, 4, 0, 2, 2, 2, 0, 4, 0, 6, 0, 2, 0, 2, 2, 2, 0, 4, 2, 4, 0, 3, 0, 2, 2, 4, 0, 2, 0, 6, 0, 2, 0, 4, 2, 4, 0, 2, 0, 4, 2, 4, 0, 2, 2, 2
Offset: 1

Views

Author

Seiichi Manyama, Dec 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Count[Divisors[3 n-2],?(IntegerQ[(#-2)/3]&)],{n,100}] (* _Harvey P. Dale, Apr 23 2023 *)
    a[n_] := DivisorSum[3*n-2, 1 &, Mod[#, 3] == 2 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
  • PARI
    a(n) = sumdiv(3*n-2, d, d%3==2);
    
  • PARI
    my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^(3*k-1)))))

Formula

a(n) = A001822(3*n-2).
G.f.: Sum_{k>0} x^(2*k)/(1 - x^(3*k-1)).

A363889 Sum of divisors of 3*n-2 of form 3*k+1.

Original entry on oeis.org

1, 5, 8, 11, 14, 21, 20, 23, 26, 40, 32, 35, 38, 55, 44, 47, 57, 70, 56, 59, 62, 85, 68, 88, 74, 100, 80, 83, 86, 115, 112, 95, 98, 140, 104, 107, 110, 168, 116, 119, 122, 160, 128, 154, 160, 175, 140, 143, 146, 190, 152, 184, 158, 231, 164, 167, 183, 220, 208, 179, 182, 235, 188
Offset: 1

Views

Author

Seiichi Manyama, Jun 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[3*n - 2, # &, Mod[#, 3] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 26 2023 *)
  • PARI
    a(n) = sumdiv(3*n-2, d, (d%3==1)*d);

Formula

a(n) = A078181(3*n-2).
G.f.: Sum_{k>0} (3*k-2) * x^k/(1 - x^(3*k-2)).

A364064 Expansion of Sum_{k>0} k * x^k / (1 - x^(3*k-2)).

Original entry on oeis.org

1, 3, 4, 5, 6, 9, 8, 9, 10, 16, 12, 13, 14, 21, 16, 17, 21, 26, 20, 21, 22, 31, 24, 32, 26, 36, 28, 29, 30, 41, 40, 33, 34, 50, 36, 37, 38, 60, 40, 41, 42, 56, 44, 54, 56, 61, 48, 49, 50, 66, 52, 64, 54, 81, 56, 57, 63, 76, 72, 61, 62, 81, 64, 76, 66, 99, 68, 69, 70, 102, 72, 73, 88, 108, 76, 77, 78, 101
Offset: 1

Views

Author

Seiichi Manyama, Jul 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[3*n - 2, # + 2 &, Mod[#, 3] == 1 &]/3; Array[a, 100] (* Amiram Eldar, Jul 05 2023 *)
  • PARI
    a(n) = sumdiv(3*n-2, d, (d%3==1)*(d+2))/3;

Formula

a(n) = (1/3) * Sum_{d | 3*n-2, d==1 (mod 3)} (d+2).
G.f.: Sum_{k>0} x^k / (1 - x^(3*k-2))^2.

A363853 Number of divisors of 7*n-6 of form 7*k+1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 4, 2, 2
Offset: 1

Views

Author

Seiichi Manyama, Jun 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[7*n - 6, 1 &, Mod[#, 7] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    a(n) = sumdiv(7*n-6, d, d%7==1);

Formula

a(n) = A279061(7*n-6).
G.f.: Sum_{k>0} x^k/(1 - x^(7*k-6)).
Showing 1-5 of 5 results.