A359225 Numbers that can be expressed as (a^3 + b^3)/(a*b) with b > a >= 1.
9, 18, 27, 28, 35, 36, 45, 54, 56, 63, 65, 70, 72, 81, 84, 90, 91, 99, 105, 108, 112, 117, 126, 130, 133, 135, 140, 144, 152, 153, 162, 168, 171, 175, 180, 182, 189, 195, 196, 198, 207, 210, 216, 217, 224, 225, 234, 243, 245, 252, 260, 261, 266, 270, 273, 279, 280, 288, 297
Offset: 1
Examples
63 can be expressed as (14^3 + 28^3)/(14*28) so 63 is a term.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..22000
Crossrefs
Programs
-
MATLAB
function a = A359225( max_n ) OneToN = [1:max_n]; a = []; for n = 1:max_n-1 A = (OneToN(1:n)'*ones(1,max_n-n)).^3 ... + (ones(n,1)*OneToN(n+1:end)).^3; a = unique([a reshape(A(:),1,numel(A))]); a = a(1:min(length(a),max_n)); end A = a'*OneToN; a = unique(A(:)); a = a(1:min(length(a),max_n))'; end
-
Mathematica
n = 300; Union@ Sort@Flatten@ Table[r*(s^3 + t^3), {r, 1, n/9}, {s, 1, CubeRoot[n/(2*r) - 1]}, {t, s + 1, CubeRoot[n/r - s^3]}]
-
PARI
isA359225 = A373973; \\ Antti Karttunen, Jun 24 2024
-
Python
def aupto(limit): c=[k**3 for k in range(1,limit) if k**3<=limit] s=set() for i in range(len(c)): for j in range(i+1,len(c)): t=(c[i]+c[j]) for r in range(1, limit//t+1) : s.add(r*t) return(sorted(s)) print(aupto(500))
Comments