cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359225 Numbers that can be expressed as (a^3 + b^3)/(a*b) with b > a >= 1.

Original entry on oeis.org

9, 18, 27, 28, 35, 36, 45, 54, 56, 63, 65, 70, 72, 81, 84, 90, 91, 99, 105, 108, 112, 117, 126, 130, 133, 135, 140, 144, 152, 153, 162, 168, 171, 175, 180, 182, 189, 195, 196, 198, 207, 210, 216, 217, 224, 225, 234, 243, 245, 252, 260, 261, 266, 270, 273, 279, 280, 288, 297
Offset: 1

Views

Author

Zhining Yang, Dec 22 2022

Keywords

Comments

Numbers k such that k*a*b = a^3 + b^3 has integer solutions with b > a >= 1.
Numbers of the form r*(s^3 + t^3) with r >= 1 and s > t >= 1, by a = r*s*t^2, b = r*s^2*t.

Examples

			63 can be expressed as (14^3 + 28^3)/(14*28) so 63 is a term.
		

Crossrefs

Cf. A009003, A024670 (subsequence), A373973 (characteristic function).
Positions of positive terms in A373974.

Programs

  • MATLAB
    function a = A359225( max_n )
        OneToN = [1:max_n]; a = [];
        for n = 1:max_n-1
            A = (OneToN(1:n)'*ones(1,max_n-n)).^3 ...
              + (ones(n,1)*OneToN(n+1:end)).^3;
            a = unique([a reshape(A(:),1,numel(A))]);
            a = a(1:min(length(a),max_n));
        end
        A = a'*OneToN;
        a = unique(A(:)); a = a(1:min(length(a),max_n))';
    end
    
  • Mathematica
    n = 300; Union@
     Sort@Flatten@
       Table[r*(s^3 + t^3), {r, 1, n/9}, {s, 1,
         CubeRoot[n/(2*r) - 1]}, {t, s + 1, CubeRoot[n/r - s^3]}]
  • PARI
    isA359225 = A373973; \\ Antti Karttunen, Jun 24 2024
  • Python
    def aupto(limit):
        c=[k**3 for k in range(1,limit) if k**3<=limit]
        s=set()
        for i in range(len(c)):
            for j in range(i+1,len(c)):
                t=(c[i]+c[j])
                for r in range(1, limit//t+1) :
                    s.add(r*t)
        return(sorted(s))
    print(aupto(500))