cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359236 Number of divisors of 5*n-2 of form 5*k+1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 2, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 4, 1, 3, 2, 1, 1, 3, 1, 1, 2, 2, 2, 3, 1, 1, 3, 1, 1, 5, 1, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 1, 3, 3, 1, 4, 1, 1, 2, 1, 2, 4, 1, 2, 2, 1, 1, 3, 1, 3
Offset: 1

Views

Author

Seiichi Manyama, Dec 22 2022

Keywords

Comments

Also number of divisors of 5*n-2 of form 5*k+3.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n-2, 1 &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
  • PARI
    a(n) = sumdiv(5*n-2, d, d%5==1);
    
  • PARI
    a(n) = sumdiv(5*n-2, d, d%5==3);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(5*k-2))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(3*k-2)/(1-x^(5*k-4))))

Formula

a(n) = A001876(5*n-2) = A001878(5*n-2).
G.f.: Sum_{k>0} x^k/(1 - x^(5*k-2)).
G.f.: Sum_{k>0} x^(3*k-2)/(1 - x^(5*k-4)).