A359247 The bottom entry in the absolute difference triangle of the elements in the Collatz trajectory of n.
1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0
Offset: 1
Keywords
Examples
a(3) = 1 because the Collatz trajectory of 3 is T = [3, 10, 5, 16, 8, 4, 2, 1], and the absolute difference triangle of the elements of T is: 3 . 10 . 5 . 16 . 8 . 4 . 2 . 1 7 . 5 . 11 . 8 . 4 . 2 . 1 2 . 6 . 3 . 4 . 2 . 1 4 . 3 . 1 . 2 . 1 1 . 2 . 1 . 1 1 . 1 . 0 0 . 1 1 with bottom entry a(3) = 1.
Links
Programs
-
Mathematica
Collatz[n_]:=NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&];Flatten[Table[Collatz[n],{n,10}]];Table[d=Collatz[m];While[Length[d]>1,d=Abs[Differences[d]]];d[[1]],{m,100}]
-
PARI
a(n) = my(list=List([n])); while (n!=1, if(n%2, n=3*n+1, n=n/2); listput(list, n)); my(v = Vec(list)); while (#v != 1, v = vector(#v-1, k, abs(v[k+1]-v[k]))); v[1]; \\ Michel Marcus, Dec 23 2022
Formula
a(2^n) = 1.