A359280 Powerful numbers that are neither prime powers nor powers of squarefree composites.
72, 108, 144, 200, 288, 324, 392, 400, 432, 500, 576, 648, 675, 784, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1600, 1728, 1800, 1936, 1944, 2000, 2025, 2304, 2312, 2500, 2592, 2700, 2704, 2888, 2916, 3087, 3136, 3200, 3267, 3456, 3528, 3600, 3872, 3888, 3969
Offset: 1
Keywords
Examples
Let b(n) = A286708(n). b(1) = 36 is not in the sequence since rad(36) = A007947(36) = 6, and 36 = 6^2. b(2) = a(1) = 72 since 72 is not a perfect power of rad(72). b(3) = 100 = rad(100)^2 = 10^2, so it is not in the sequence. b(4) = a(2) = 108, since 108 is not a perfect power of rad(108) = 6. b(5) = a(3) = 144, since 144 is not a perfect power of rad(144) = 6. b(6) = 196 is not in the sequence since 196 = rad(196)^2 = 14^2, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Plot A001694(ym + x) at (x, y) for n = ym + x, m = 1024 and x = 1..m, y = 0..m-1, showing terms in this sequence in black, and both prime powers and those in A303606 in white.
- Michael De Vlieger, Plot A286708(n) at (x, y) for n = ym + x, m = 1024 and x = 1..m, y = 0..m-1, showing terms in this sequence in black, and those in A303606 in white.
Programs
-
Mathematica
nn = 5000; s = Rest@ Select[Union@ Flatten@Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], Not@*PrimePowerQ]; Select[s, !SameQ @@ FactorInteger[#][[All, -1]] &]
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A359280(n): def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): j = isqrt(x) c, l = n+x+3-(y:=x.bit_length())+squarefreepi(j)+sum(squarefreepi(integer_nthroot(x, k)[0]) for k in range(4, y)), 0 while j>1: k2 = integer_nthroot(x//j**2,3)[0]+1 w = squarefreepi(k2-1) c -= j*(w-l) l, j = w, isqrt(x//k2**3) return c+l return bisection(f,n,n) # Chai Wah Wu, Feb 09 2025
Formula
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Sum_{k>=2} (zeta(k)/zeta(2*k) - 1) - 1 = 0.094962568855... . - Amiram Eldar, Dec 09 2023
Comments