A359290 Number of divisors of 4*n-2 of form 4*k+3.
0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 2, 1, 0, 2, 0, 1, 2, 2, 0, 2, 0, 1, 2, 1, 1, 2, 0, 2, 2, 1, 0, 3, 0, 1, 2, 1, 0, 3, 2, 1, 2, 1, 0, 2, 0, 2, 2, 2, 0, 3, 0, 1, 4, 1, 0, 2, 0, 2, 2, 2, 1, 2, 0, 1, 2, 1, 2, 4, 0, 1, 2, 2, 0, 3, 0, 1, 2, 2, 0, 2, 2, 1, 4, 1, 0, 3, 0, 3, 2, 1
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Count[Divisors[4 n-2],?(IntegerQ[(#-3)/4]&)],{n,100}] (* _Harvey P. Dale, May 09 2023 *) a[n_] := DivisorSum[4*n-2, 1 &, Mod[#, 4] == 3 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
-
PARI
a(n) = sumdiv(4*n-2, d, d%4==3);
-
PARI
my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^(4*k-1)))))
-
PARI
my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(3*k-1)/(1-x^(4*k-2)))))
Formula
a(n) = A001842(4*n-2).
G.f.: Sum_{k>0} x^(2*k)/(1 - x^(4*k-1)).
G.f.: Sum_{k>0} x^(3*k-1)/(1 - x^(4*k-2)).