A359311 Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2*n steps which reach at least 6 at some point.
0, 0, 0, 0, 0, 0, 1, 12, 89, 528, 2755, 13244, 60214, 263121, 1116791, 4637476, 18936940, 76327705, 304520286, 1205152900, 4738962369, 18540020091, 72240167011, 280579954028, 1087033982059, 4203231136230, 16228518078010, 62588797371361, 241198478726775
Offset: 0
Examples
a(n) = 0 for n <= 5 because no path of length <= 10 can reach 6 and then descend to 0. a(6) = 1 because there is one path of length 12 that reaches 6: six steps up, and six steps back down.
Programs
-
Maple
a:= n-> binomial(2*n, n)/(n+1)-(<<0|1|0>, <0|0|1>, <1|-6|5>>^n. <<1, 1, 2>>)[1, 1]: seq(a(n), n=0..35); # Alois P. Heinz, Jan 21 2023
-
Mathematica
Table[Sum[Binomial[2(n + 1), (n + 1) + 7 k] - 4 Binomial[2n, n + 7k], {k,1,n}], {n,0,30}]
Formula
a(n) = Sum_{k >= 1} binomial(2*(n+1), (n+1) + 7*k) - 4*binomial(2*n, n+7*k).
From Alois P. Heinz, Jan 21 2023: (Start)
G.f.: (1-sqrt(1-4*x))/(2*x) - (1-4*x+3*x^2)/(1-5*x+6*x^2-x^3).
a(n) = Sum_{k=6..n} A080936(n,k). (End)
D-finite with recurrence -(n+1)*(n-6)*a(n) +3*(3*n^2-17*n+4)*a(n-1) +2*(-13*n^2+80*n-87)*a(n-2) +(25*n^2-161*n+246)*a(n-3) -2*(n-3)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jan 25 2023
Comments