A359330 Composite k for which phi(k) + phi(k') = k, where k' is the arithmetic derivative of k (A003415).
4, 6, 8, 10, 12, 18, 22, 28, 34, 58, 60, 72, 82, 84, 88, 108, 112, 118, 124, 132, 140, 142, 202, 204, 214, 216, 220, 228, 260, 274, 298, 324, 340, 358, 372, 382, 394, 444, 454, 478, 492, 508, 538, 562, 564, 572, 580, 620, 622, 644, 694, 708, 740, 804, 812, 820
Offset: 1
Keywords
Examples
If m = 4 then m' = 4 and phi(m) + phi(m') = phi(4) + phi(4) = 2 + 2 = 4, so 4 is a term. If m = 8 then m' = 12 and phi(m) + phi(m') = phi(8) + phi(12) = 4 + 4 = 8, so 8 is a term. 14 is not a term because phi(14) + phi(14') = 6 + phi(9) = 6 + 6 = 12 <> 14.
Programs
-
Magma
f:=func
; [n:n in [2..850]|not IsPrime(n) and n eq EulerPhi(Floor(f(n))) + EulerPhi(n)]; -
Maple
d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]): q:= n-> not isprime(n) and (p-> p(n)+p(d(n))=n)(numtheory[phi]): select(q, [$4..1000])[]; # Alois P. Heinz, Jan 29 2023
-
Mathematica
d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[1000], CompositeQ[#] && EulerPhi[#] + EulerPhi[d[#]] == # &] (* Amiram Eldar, Jan 29 2023 *)
Comments