A359361 Irregular triangle read by rows whose n-th row lists the partial sums of the integer partition with Heinz number n.
1, 2, 1, 2, 3, 2, 3, 4, 1, 2, 3, 2, 4, 3, 4, 5, 2, 3, 4, 6, 4, 5, 3, 5, 1, 2, 3, 4, 7, 2, 4, 5, 8, 3, 4, 5, 4, 6, 5, 6, 9, 2, 3, 4, 5, 3, 6, 6, 7, 2, 4, 6, 4, 5, 6, 10, 3, 5, 6, 11, 1, 2, 3, 4, 5, 5, 7, 7, 8, 4, 7, 2, 4, 5, 6, 12, 8, 9, 6, 8, 3, 4, 5, 6, 13
Offset: 2
Examples
Triangle begins: 2: 1 3: 2 4: 1 2 5: 3 6: 2 3 7: 4 8: 1 2 3 9: 2 4 10: 3 4 11: 5 12: 2 3 4 13: 6 14: 4 5 15: 3 5 16: 1 2 3 4 For example, the integer partition with Heinz number 90 is (3,2,2,1), so row n = 90 is (3,5,7,8).
Crossrefs
Programs
-
Maple
T:= n-> ListTools[PartialSums](sort([seq(numtheory [pi](i[1])$i[2], i=ifactors(n)[2])], `>`))[]: seq(T(n), n=2..50); # Alois P. Heinz, Jan 01 2023
-
Mathematica
Table[Accumulate[Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],{n,2,30}]
Comments