cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359365 a(n) = lcm([ n!*binomial(n-1, m-1) / m! for m = 1..n ]) with a(0) = 1.

Original entry on oeis.org

1, 1, 2, 6, 72, 240, 3600, 75600, 1411200, 10160640, 457228800, 4191264000, 184415616000, 2054916864000, 12466495641600, 1308982042368000, 314155690168320000, 14241724620963840000, 2178983867007467520000, 37260624125827694592000, 337119932567012474880000
Offset: 0

Views

Author

Peter Luschny, Dec 30 2022

Keywords

Comments

The lcm of the rows of the unsigned Lah triangle (for k >= 1).

Crossrefs

Cf. A271703 (unsigned Lah numbers), A103505 (gcd counterpart).

Programs

  • Maple
    # Maple has the convention integer lcm() = 1, which covers the case n = 0.
    a := n -> ilcm(seq(n!*binomial(n-1, m-1) / m!, m = 1..n)):
    seq(a(n), n = 0..20);
  • Mathematica
    {1}~Join~Table[LCM @@ Array[n!*Binomial[n - 1, # - 1]/#! &, n], {n, 20}] (* Michael De Vlieger, Dec 30 2022 *)
  • PARI
    a(n) = lcm(vector(n, m, n!*binomial(n-1, m-1) / m!)); \\ Michel Marcus, Dec 30 2022
  • Python
    from functools import cache
    from sympy import lcm
    def A359365 (n: int) -> int:
        @cache
        def l(n: int) -> list[int]:
            if n == 0: return [1]
            row: list[int] = l(n - 1) + [1]
            row[0] = 0
            for k in range(n - 1, 0, -1):
                row[k] = row[k] * (n + k - 1) + row[k - 1]
            return row
        return lcm(l(n)[1:])
    print([A359365(n) for n in range(21)])