A359365 a(n) = lcm([ n!*binomial(n-1, m-1) / m! for m = 1..n ]) with a(0) = 1.
1, 1, 2, 6, 72, 240, 3600, 75600, 1411200, 10160640, 457228800, 4191264000, 184415616000, 2054916864000, 12466495641600, 1308982042368000, 314155690168320000, 14241724620963840000, 2178983867007467520000, 37260624125827694592000, 337119932567012474880000
Offset: 0
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..390
Programs
-
Maple
# Maple has the convention integer lcm() = 1, which covers the case n = 0. a := n -> ilcm(seq(n!*binomial(n-1, m-1) / m!, m = 1..n)): seq(a(n), n = 0..20);
-
Mathematica
{1}~Join~Table[LCM @@ Array[n!*Binomial[n - 1, # - 1]/#! &, n], {n, 20}] (* Michael De Vlieger, Dec 30 2022 *)
-
PARI
a(n) = lcm(vector(n, m, n!*binomial(n-1, m-1) / m!)); \\ Michel Marcus, Dec 30 2022
-
Python
from functools import cache from sympy import lcm def A359365 (n: int) -> int: @cache def l(n: int) -> list[int]: if n == 0: return [1] row: list[int] = l(n - 1) + [1] row[0] = 0 for k in range(n - 1, 0, -1): row[k] = row[k] * (n + k - 1) + row[k - 1] return row return lcm(l(n)[1:]) print([A359365(n) for n in range(21)])
Comments