A359405 Number of unordered pairs of self-avoiding paths with nodes that cover all vertices of a convex n-gon; one-node paths are allowed.
3, 15, 70, 330, 1596, 7840, 38592, 188640, 911680, 4350720, 20507136, 95560192, 440724480, 2014003200, 9128476672, 41074384896, 183618256896, 816062464000, 3607813816320, 15874289958912, 69544309424128, 303465643376640, 1319414897049600, 5717462509158400, 24699433622962176, 106397550709309440
Offset: 3
Links
- Ivaylo Kortezov, Sets of Non-self-intersecting Paths Connecting the Vertices of a Convex Polygon, Mathematics and Informatics, Vol. 65, No. 6, 2022.
- Index entries for linear recurrences with constant coefficients, signature (18,-132,504,-1056,1152,-512).
Programs
-
Mathematica
LinearRecurrence[{18,-132,504,-1056,1152,-512},{3,15,70,330,1596,7840},26] (* Stefano Spezia, Dec 30 2022 *)
-
PARI
a(n) = {if(n < 3, 0, n*(n - 1)*2^(n-6)*(2^(n-3) + 3))} \\ Andrew Howroyd, Jan 10 2023
Formula
a(n) = n * (n-1) * 2^(n-6) * (2^(n-3) + 3).
From Stefano Spezia, Dec 30 2022: (Start)
G.f.: x^3*(3 - 39*x + 196*x^2 - 462*x^3 + 504*x^4 - 224*x^5) / ((1 - 2*x)^3*(1 - 4*x)^3).
a(n) = 18*a(n-1) - 132*a(n-2) + 504*a(n-3) - 1056*a(n-4) + 1152*a(n-5) - 512*a(n-6) for n > 8. (End)
E.g.f.: ((x*exp(2*x) + 3*x)/4)^2/2 - x^2/2. - Andrew Howroyd, Jan 10 2023
Comments